Stiffened thermosetting composite panels were fabricated with co-curing processing.In the co-curing processing,the temperature distribution in the composite panels was nonuniform.An investigation into the threedimensi...Stiffened thermosetting composite panels were fabricated with co-curing processing.In the co-curing processing,the temperature distribution in the composite panels was nonuniform.An investigation into the threedimensional cure simulation of T-shape stiffened thermosetting composite panels was presented.Flexible tools and locating tools were considered in the cure simulation.Temperature distribution in the composites was predicted as a function of the autoclave temperature history.A nonlinear transient heat transfer finite element model was developed to simulate the curing process of stiffened thermosetting composite panels.And a simulation example was presented to demonstrate the use of the present finite element procedure for analyzing composite curing process.The glass/polyester structure was investigated to provide insight into the nonuniform cure process and the effect of flexible tools and locating tools on temperature distribution.Temperature gradient in the intersection between the skin and the flange was shown to be strongly dependent on the structure of the flexible tools and the thickness of the skin.展开更多
In order to solve the bad low frequency sound absorption of the Micro-Perforated panel (MPP) absorber, mechanical impedance was introduced in the back of the MPP absorber to form a composite structure. According to ...In order to solve the bad low frequency sound absorption of the Micro-Perforated panel (MPP) absorber, mechanical impedance was introduced in the back of the MPP absorber to form a composite structure. According to the same particle vibration velocity on both sides of a plate, the mechanical impedance plate transfer matrix could be obtained. The units of the mechanical impedance, cavity and MPP were connected in series with the use of the transfer matrix method, thus creating the composite structure's theoretical calculation model. The qual- ity factor affecting absorption bandwidth was analyzed. Bandwidth is inversely proportional to the mechanical impedance plate mass. During the experiments, when at close to 400 Hz, the composite structure reached an absorption peak with a coefficient of above 0.8. Experimen- tal results concurred with theoretical calculations. Mechanical resonance is added based on the traditional MPP resonance sound absorption mechanism. Through this, the performance of low frequency sound absorption can be improved without increasing the thickness of the structure. The frequency band can be broadened by reducing the mechanical impedance plate mass and controlling its boundary-damping coefficient.展开更多
Dent resistance of automobile body panels is an important property for automobile design and manufacture, but the study on this aspect is not still profound. This study is to summarize the testing methods and physical...Dent resistance of automobile body panels is an important property for automobile design and manufacture, but the study on this aspect is not still profound. This study is to summarize the testing methods and physical significations of static and dynamic dent resistance of automobile body panels combined with the author's study, and to analyze the dent behaviors in the round. Several influence factors on dent resistance are expatiated including the mechanical properties of materials, stress states after forming, bake hardening ability, modulus, methods of testing, and structure of specimens and so on. The automotive lightweight and application of high strength steel sheets and aluminum alloys sheets are analyzed, and the significance of testing of dent resistance, especially for dynamic dent resistance of auto-panels, and the finite element simulation analysis are emphasized. To explain the physical phenomenon of dent behaviors, the latest and concerned study results are also discussed. According to this study, a dent resistance test and evaluation standard of Society of Automotive Engineers of China for automotive body panel is presented and is being carried out, and an industry conference is hold to discuss the working-out of the standard, a primary schedule of this standard is confirmed now. The study can guide the further testing and study of dent resistant of auto-panels.展开更多
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an...The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings.展开更多
The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy avai...The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy availability varies, this criterion may not be optimal. This study explores two alternative optimization criteria focused on maximizing baseload supply potential and minimizing required storage capacity to address seasonality in energy generation. The optimal tilt angles determined for these criteria differed significantly from the standard approach. This research highlights additional factors crucial for designing solar power systems beyond gross energy generation, essential for the global transition towards a fully renewable energy-based electric grid in the future.展开更多
This article presents the results of comparative study of two PV solar modules technologies,namely monofacial and bifacial.This study main objective is to identify conditions and parameters that make it possible to ob...This article presents the results of comparative study of two PV solar modules technologies,namely monofacial and bifacial.This study main objective is to identify conditions and parameters that make it possible to obtain better energy and economic efficiency from one or other of two technologies.The study reason lies in revival observed on bifacial module in recent years where all the major manufacturers of PV solar panels are developing them where in a few years,this technology risks being at the same price as the monofacial solar panel with better efficiency.Economic indicator used is energy levelized cost(LCOE)which is function technology type,energy productivity,annual investment and operation cost.To achieve this,a 3.685 MWc solar PV power plant was dimensioned and simulated under Matlab for a 3.5 ha site with a 2,320,740,602 FCFA budget for monofacial installation,against 1,925,188,640 FCFA for 2.73 MWc bifacial installation.The LCOE comparative analysis of two technologies calculated over a period of 25 years,showed that plant with bifacial panels is more beneficial if bifacial gain is greater than 9%.It has further been found that it is possible to gain up to 40%of invested cost if bifacial gain reaches 45%.Finally,a loss of about 10%of invested cost could be recorded if bifacial gain is less than 9%.展开更多
This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV tech...This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations.展开更多
An explicit topology optimization method for the stiffener layout of composite stiffened panels is proposed based on moving morphable components(MMCs).The skin and stiffeners are considered as panels with different be...An explicit topology optimization method for the stiffener layout of composite stiffened panels is proposed based on moving morphable components(MMCs).The skin and stiffeners are considered as panels with different bending stiffnesses,with the use of equivalent stiffness method.Then the location and geometric properties of composite stiffeners are determined by several MMCs to perform topology optimization,which can greatly simplify the finite element model.With the objective of maximizing structural stiffness,several typical cases with various loading and boundary conditions are selected as numerical examples to demonstrate the proposed method.The numerical examples illustrate that the proposed method can provide clear stiffener layout and explicit geometry information,which is not limited within the framework of parameter and size optimization.The mechanical properties of composite stiffened panels can be fully enhanced.展开更多
Recent development of ultralightweight lattice-cored sandwiches is reviewed,with focus placed on various novel fabrication methods introduced to strengthen these structures,covering not only research results published...Recent development of ultralightweight lattice-cored sandwiches is reviewed,with focus placed on various novel fabrication methods introduced to strengthen these structures,covering not only research results published in the Science China Series E-Tech Sci,but also those in other domestic and overseas scientific journals.展开更多
Stratospheric airships are long-endurance aerostats and have broad applications.All of the energy required for their operation is obtained from solar radiation,which makes accurate calculation of the energy output fro...Stratospheric airships are long-endurance aerostats and have broad applications.All of the energy required for their operation is obtained from solar radiation,which makes accurate calculation of the energy output from the solar array crucial to the design and flight planning of the airships.However,the status of each photovoltaic module in the solar array may differ due to the airship curvature,resulting in mismatch losses and lowered output power,which has not been widely studied.In this paper,an irradiation model and a thermal model are established based on the actual arrangement of the modules.The output power model is established considering the non-uniform radiation in the array.The mismatch losses of the array are analyzed under different flight conditions.The output power of the solar array is decreased by up to 31.6%compared to the ideal state.Moreover,the proportion of mismatch losses increases with latitude,but the maximum mismatch loss power occurs at mid-latitudes.Then,an array reconfiguration method is proposed based on the irradiance dispersion index and position dispersion index.The reconfigured array increases output power by 11.5%and can maintain energy balance in continuous flight.The results can be used to correct the overestimation of the output power during the airship design or to guide the configuration of the solar array.展开更多
The main target of this research is to allow solar PV to contribute economically to an on-grid energy-efficient building where the dust accumulation is a significant factor.Self-cleaning coatings such as hydrophobic o...The main target of this research is to allow solar PV to contribute economically to an on-grid energy-efficient building where the dust accumulation is a significant factor.Self-cleaning coatings such as hydrophobic or hy-drophilic materials have recently been introduced to reduce dust deposition on building-integrated PV(BIPV)panels.The hydrophilic Nano-coated material is examined as a solution to decrease the impact of the dust on the BIPV panels and harvest more solar energy.An impartial comparison of the BIPV panels performance under natu-ral dust conditions,manual cleaning,and hydrophilic nanomaterial coating is performed.Through an exhaustive and qualitative experimental analysis,the anti-reflection and anti-static properties of the utilized Nano-coated material are examined.The experimental results show that the hydrophilic Nano-coated material significantly improves the gathered maximum output power by 18%compared to the manually wiped panel.The calculated efficiencies of the Nano-coated,manual cleaning,and dusty panels are 11%,9%,and 6%,respectively,which highlights the futureproofing of the Nano-coated solar panel.Compared to the dusty panels,the ecological and economical results show that the BIPV carbon emissions are desirably dropped by 11%while using Nano-coated PV panels and the payback period is reduced to 3.9 years,which is approximately 12.8%faster.展开更多
文摘Stiffened thermosetting composite panels were fabricated with co-curing processing.In the co-curing processing,the temperature distribution in the composite panels was nonuniform.An investigation into the threedimensional cure simulation of T-shape stiffened thermosetting composite panels was presented.Flexible tools and locating tools were considered in the cure simulation.Temperature distribution in the composites was predicted as a function of the autoclave temperature history.A nonlinear transient heat transfer finite element model was developed to simulate the curing process of stiffened thermosetting composite panels.And a simulation example was presented to demonstrate the use of the present finite element procedure for analyzing composite curing process.The glass/polyester structure was investigated to provide insight into the nonuniform cure process and the effect of flexible tools and locating tools on temperature distribution.Temperature gradient in the intersection between the skin and the flange was shown to be strongly dependent on the structure of the flexible tools and the thickness of the skin.
基金supported by the Scientific Research Foundation for Senior Professional of Jiangsu University(11JDG096)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions((2011)6)
文摘In order to solve the bad low frequency sound absorption of the Micro-Perforated panel (MPP) absorber, mechanical impedance was introduced in the back of the MPP absorber to form a composite structure. According to the same particle vibration velocity on both sides of a plate, the mechanical impedance plate transfer matrix could be obtained. The units of the mechanical impedance, cavity and MPP were connected in series with the use of the transfer matrix method, thus creating the composite structure's theoretical calculation model. The qual- ity factor affecting absorption bandwidth was analyzed. Bandwidth is inversely proportional to the mechanical impedance plate mass. During the experiments, when at close to 400 Hz, the composite structure reached an absorption peak with a coefficient of above 0.8. Experimen- tal results concurred with theoretical calculations. Mechanical resonance is added based on the traditional MPP resonance sound absorption mechanism. Through this, the performance of low frequency sound absorption can be improved without increasing the thickness of the structure. The frequency band can be broadened by reducing the mechanical impedance plate mass and controlling its boundary-damping coefficient.
基金supported by National Hi-tech Research and Development Program of China(863 Program, Grant No. 2007AA03z551)Chongqing Municipal Technology Project of China (Grant No. 2007AA4008-4-4)
文摘Dent resistance of automobile body panels is an important property for automobile design and manufacture, but the study on this aspect is not still profound. This study is to summarize the testing methods and physical significations of static and dynamic dent resistance of automobile body panels combined with the author's study, and to analyze the dent behaviors in the round. Several influence factors on dent resistance are expatiated including the mechanical properties of materials, stress states after forming, bake hardening ability, modulus, methods of testing, and structure of specimens and so on. The automotive lightweight and application of high strength steel sheets and aluminum alloys sheets are analyzed, and the significance of testing of dent resistance, especially for dynamic dent resistance of auto-panels, and the finite element simulation analysis are emphasized. To explain the physical phenomenon of dent behaviors, the latest and concerned study results are also discussed. According to this study, a dent resistance test and evaluation standard of Society of Automotive Engineers of China for automotive body panel is presented and is being carried out, and an industry conference is hold to discuss the working-out of the standard, a primary schedule of this standard is confirmed now. The study can guide the further testing and study of dent resistant of auto-panels.
文摘The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings.
文摘The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy availability varies, this criterion may not be optimal. This study explores two alternative optimization criteria focused on maximizing baseload supply potential and minimizing required storage capacity to address seasonality in energy generation. The optimal tilt angles determined for these criteria differed significantly from the standard approach. This research highlights additional factors crucial for designing solar power systems beyond gross energy generation, essential for the global transition towards a fully renewable energy-based electric grid in the future.
文摘This article presents the results of comparative study of two PV solar modules technologies,namely monofacial and bifacial.This study main objective is to identify conditions and parameters that make it possible to obtain better energy and economic efficiency from one or other of two technologies.The study reason lies in revival observed on bifacial module in recent years where all the major manufacturers of PV solar panels are developing them where in a few years,this technology risks being at the same price as the monofacial solar panel with better efficiency.Economic indicator used is energy levelized cost(LCOE)which is function technology type,energy productivity,annual investment and operation cost.To achieve this,a 3.685 MWc solar PV power plant was dimensioned and simulated under Matlab for a 3.5 ha site with a 2,320,740,602 FCFA budget for monofacial installation,against 1,925,188,640 FCFA for 2.73 MWc bifacial installation.The LCOE comparative analysis of two technologies calculated over a period of 25 years,showed that plant with bifacial panels is more beneficial if bifacial gain is greater than 9%.It has further been found that it is possible to gain up to 40%of invested cost if bifacial gain reaches 45%.Finally,a loss of about 10%of invested cost could be recorded if bifacial gain is less than 9%.
文摘This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations.
基金The financial supports from the National Key Research and Development Plan(2016YFB0201601)the Foundation for Innovative Research Groups of the National Natural Science Foundation(11821202)+3 种基金the National Natural Science Foundation(11872138,11702048,11732004 and 11772076)Program for Changjiang Scholars,Innovative Research Team in University(PCSIRT)Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)Liaoning Natural Science Foundation Guidance Plan(20170520293)111 Project(B14013)are gratefully acknowledged.
文摘An explicit topology optimization method for the stiffener layout of composite stiffened panels is proposed based on moving morphable components(MMCs).The skin and stiffeners are considered as panels with different bending stiffnesses,with the use of equivalent stiffness method.Then the location and geometric properties of composite stiffeners are determined by several MMCs to perform topology optimization,which can greatly simplify the finite element model.With the objective of maximizing structural stiffness,several typical cases with various loading and boundary conditions are selected as numerical examples to demonstrate the proposed method.The numerical examples illustrate that the proposed method can provide clear stiffener layout and explicit geometry information,which is not limited within the framework of parameter and size optimization.The mechanical properties of composite stiffened panels can be fully enhanced.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2006CB601202)the National Natural Science Foundation of China(Grant Nos.10632060,10825210)+1 种基金the National 111 Project of China(Grant No.B06024)the National High-Tech Research and Development Program of China("863"Project)(Grant No.2006AA03Z519)
文摘Recent development of ultralightweight lattice-cored sandwiches is reviewed,with focus placed on various novel fabrication methods introduced to strengthen these structures,covering not only research results published in the Science China Series E-Tech Sci,but also those in other domestic and overseas scientific journals.
基金supported by the National Natural Science Foundation of China(No.51775021)the Fundamental Research Funds for the Central Universities,China(Nos.YWF-23-JC-02,YWF-23-JC-09)。
文摘Stratospheric airships are long-endurance aerostats and have broad applications.All of the energy required for their operation is obtained from solar radiation,which makes accurate calculation of the energy output from the solar array crucial to the design and flight planning of the airships.However,the status of each photovoltaic module in the solar array may differ due to the airship curvature,resulting in mismatch losses and lowered output power,which has not been widely studied.In this paper,an irradiation model and a thermal model are established based on the actual arrangement of the modules.The output power model is established considering the non-uniform radiation in the array.The mismatch losses of the array are analyzed under different flight conditions.The output power of the solar array is decreased by up to 31.6%compared to the ideal state.Moreover,the proportion of mismatch losses increases with latitude,but the maximum mismatch loss power occurs at mid-latitudes.Then,an array reconfiguration method is proposed based on the irradiance dispersion index and position dispersion index.The reconfigured array increases output power by 11.5%and can maintain energy balance in continuous flight.The results can be used to correct the overestimation of the output power during the airship design or to guide the configuration of the solar array.
文摘The main target of this research is to allow solar PV to contribute economically to an on-grid energy-efficient building where the dust accumulation is a significant factor.Self-cleaning coatings such as hydrophobic or hy-drophilic materials have recently been introduced to reduce dust deposition on building-integrated PV(BIPV)panels.The hydrophilic Nano-coated material is examined as a solution to decrease the impact of the dust on the BIPV panels and harvest more solar energy.An impartial comparison of the BIPV panels performance under natu-ral dust conditions,manual cleaning,and hydrophilic nanomaterial coating is performed.Through an exhaustive and qualitative experimental analysis,the anti-reflection and anti-static properties of the utilized Nano-coated material are examined.The experimental results show that the hydrophilic Nano-coated material significantly improves the gathered maximum output power by 18%compared to the manually wiped panel.The calculated efficiencies of the Nano-coated,manual cleaning,and dusty panels are 11%,9%,and 6%,respectively,which highlights the futureproofing of the Nano-coated solar panel.Compared to the dusty panels,the ecological and economical results show that the BIPV carbon emissions are desirably dropped by 11%while using Nano-coated PV panels and the payback period is reduced to 3.9 years,which is approximately 12.8%faster.