Monodisperse Ni/Pd core/shell nanoparticles (NPs) have been synthesized by sequential reduction of nickel(II) acetate and palladium(II) bromide in oleylamine (OAm) and trioctylphosphine (TOP). The Ni/Pd NPs ...Monodisperse Ni/Pd core/shell nanoparticles (NPs) have been synthesized by sequential reduction of nickel(II) acetate and palladium(II) bromide in oleylamine (OAm) and trioctylphosphine (TOP). The Ni/Pd NPs have a narrow size distribution with a mean particle size of 10 nm and a standard deviation of 5% with respect to the particle diameter. Mechanistic studies showed that the presence of TOP was essential to control the reductive decomposition of Ni-TOP and Pd-TOP, and the formation of Ni/Pd core/shell NPs. Using the current synthetic protocol, the composition of the Ni/Pd within the core/shell structure can be readily tuned by simply controlling the initial molar ratio of the Ni and Pd salts. The as-synthesized Ni/Pd core/shell NPs were supported on graphene (G) and used as catalyst in Suzuki-Miyaura cross-coupling reactions. Among three different kinds of Ni/Pd NPs tested, the Ni/Pd (Ni/Pd = 3/2) NPs were found to be the most active catalyst for the Suzuki-Miyaura cross-coupling of arylboronic acids with aryl iodides, bromides and even chlorides in a dimethylformamide/water mixture by using K2CO3 as a base at 110 ℃. The G-Ni/Pd was also stable and reusable, providing 98% conversion after the 5th catalytic run without showing any noticeable Ni/Pd composition change. The G-Ni/Pd structure reported in this paper combines both the efficiency of a homogeneous catalyst and the durability of a heterogeneous catalyst, and is promising catalyst candidate for various Pd-based catalytic applications.展开更多
An important area of research in nanotechnology deals with the synthesis of nanoparticles of different chemical compositions,sizes and controlled monodispersity.Currently,there is a growing need to develop environment...An important area of research in nanotechnology deals with the synthesis of nanoparticles of different chemical compositions,sizes and controlled monodispersity.Currently,there is a growing need to develop environmentally benign nanoparticle synthesis in which no toxic chemicals are used in the synthesis protocol.Palladium nanoparticles(Pd Np) are of interest because of their catalytic properties and affinity for hydrogen.Our protocol for the phyto-synthesis of Pd Np under moderate p H and room temperature offers a new means to develop environmentally benign nanoparticles.Solanum trilobatum is enlightened in our present study as it is enriched with phytochemicals to reduce palladium chloride ions.Poly MVA a dietary supplement based on the nontoxic chemotherapeutic lipoic acid-palladium complex(LA-Pd) is been hypothesized as the new paradigm of cancer therapy.Hence forth we successfully conjugated lipoic acid(S-Pd Np-LA) and vitamins(S-Pd Np-Vitamin-LA) to palladium nanoparticles synthesised from Solanum trilobatum leaf extract.These nanoparticles(S-Pd Np,S-Pd Np-LA,S-Pd Np-Vitamin-LA) were characterized with UV-Vis Spectroscopy,SEM and FTIR analysis,which revealed that S-Pd Np are polydisperse and of different morphologies ranging from 60?70 nm(S-Pd Np),65?80 nm(S-Pd Np-LA) and 75?100 nm(S-Pd Np-Vitamin-LA) in size.展开更多
Researchers appear to have neglected a special form of crystallites, pentagonal cyclic twinning, in which an obvious two-dimensional lattice expansion exists leading to novel physical-chemical properties associated wi...Researchers appear to have neglected a special form of crystallites, pentagonal cyclic twinning, in which an obvious two-dimensional lattice expansion exists leading to novel physical-chemical properties associated with the changes in geometric and electronic structures. Using the storage and release of hydrogen in Pd nanocrystals as a probe, we have found that icosahedral pentagonal cyclic twinned Pd nanocrystals had distinct hydrogen storage properties, due to the two-dimensional lattice expansions, quite different from those of the octahedral single crystalline counterpart. In addition, the two-dimensional lattice expansion in pentagonal cyclic twinned Pd nanocrystals causes a change in electronic structure, which results in novel catalytic properties involving in situ formation of PdHx pentagonal cyclic twinned nanocrystals.展开更多
Highly dispersed Pd/N-doped carbon dots(Pd/NCDs)were successfully immobilized in the mesoporous channels of amino-functionalized dendritic mesoporous silica nanospheres(NMS).The synthesized Pd/NCDs@NMS catalyst exhibi...Highly dispersed Pd/N-doped carbon dots(Pd/NCDs)were successfully immobilized in the mesoporous channels of amino-functionalized dendritic mesoporous silica nanospheres(NMS).The synthesized Pd/NCDs@NMS catalyst exhibits outstanding performance in the catalytic reduction of 4-nitrophenol(4-NP),achieving a turnover frequency of 1461.8 mol·molPd^(-1)·h^(-1),with the conversion rate remaining above 80%after 11 cycles.Experiments and density functional theory calculations reveal that the NCDs significantly affect the electronic structure of Pd nanoparticles,leading to changes in the energy barriers for the adsorption of 4-NP at the Pd sites and the conversion of 4-NP reaction intermediates,which is a key factor contributing to the catalytic performance.This study offers a new strategy for synthesizing carbon-dot-modified metal-based catalysts.展开更多
Developing highly efficient non-R catalysts for fuel cells and metal-air batteries is highly desirable but still challenging due to the sluggish oxygen reduction reaction(ORR).Herein,a facile and efficient strategy is...Developing highly efficient non-R catalysts for fuel cells and metal-air batteries is highly desirable but still challenging due to the sluggish oxygen reduction reaction(ORR).Herein,a facile and efficient strategy is demonstrated to prepare N-doped carbon encapsulated ordered Pd-Fe intermetallic(O-Pd-Fe@NC/C)nanoparticles via a one-step thermal annealing method.The obtained O-Pd-Fe@NC/C nanoparticles show enhanced ORR activity,durability and anti-poisoning capacity in both acid and alkaline medium.When O-Pd-Fe@NC/C serving as cathode catalyst for Zn-air battery,it exhibits higher voltage platform and superior cycling performance with respect to the Zn-air battery based on the mixture of Pt/C and Ir/C catalysts.The enhanced electrocatalytic performance can be ascribed to the formation of face-centered tetragonal(fct)Pd-Fe nanoparticles,the protective action of the N-doped carbon layer and the interface confinement effect between them.The in situ formed N-doped carbon shell not only restrains the Pd-Fe ordered intermetallics from aggregating effectively during the thermal annealing process,but also provides a strong anchoring effect to avoid the detachment of Pd-Fe nanoparticles from the carbon support during the potential cycling.This facile carbon encapsulation strategy may also be extended to the preparation of a wide variety of N-doped carbon encapsulated intermetallic compounds for fuel cell application.展开更多
Palladium (Pd) nanoparticles were synthesized using protein rich soybean leaf extract based biological process. Reduction of palladium ions by soybean leaf extract was examined by UV-visible spectroscopic technique. I...Palladium (Pd) nanoparticles were synthesized using protein rich soybean leaf extract based biological process. Reduction of palladium ions by soybean leaf extract was examined by UV-visible spectroscopic technique. It was believed that the proteins and some of the amino acids that are exist in soybean leaf extracts were actively involved in the reduction of palladium ions. Further it was confirmed by Fourier transformations infrared spectroscopic (FTIR) analysis. These amino acids are not only involving in the reduction of palladium ions but also acting as surfactants that inhibits the rapid agglomeration. The phase purity of the synthesized palladium nanoparticles was investigated through X-Ray Diffraction (XRD) analysis and the obtained pattern was compared with JCPDS data. Transmission electron microscopic (TEM) images of the palladium particles were recorded and the particle size was found to be ~15 nm.展开更多
Biogenic palladium nanoparticles(bio-Pd NPs)are used for the reductive transformation and/or dehalogenation of persistent micropollutants.In this work,H2(electron donor)was produced in situ by an electrochemical cell,...Biogenic palladium nanoparticles(bio-Pd NPs)are used for the reductive transformation and/or dehalogenation of persistent micropollutants.In this work,H2(electron donor)was produced in situ by an electrochemical cell,permitting steered production of differently sized bio-Pd NPs.The catalytic activity was first assessed by the degradation of methyl orange.The NPs showing the highest catalytic activity were selected for the removal of micropollutants from secondary treated municipal wastewater.The synthesis at different H2 flow rates(0.310 L/hr or 0.646 L/hr)influenced the bio-Pd NPs size.The NPs produced over 6 hr at a lowH2 flow rate had a larger size(D50=39.0 nm)than those produced in 3 hr at a high H2 flow rate(D50=23.2 nm).Removal of 92.1%and 44.3%of methyl orange was obtained after 30 min for the NPs with sizes of 39.0 nm and 23.2 nm,respectively.Bio-Pd NPs of 39.0 nm were used to treat micropollutants present in secondary treated municipal wastewater at concentrations ranging fromμg/L to ng/L.Effective removal of 8 compounds was observed:ibuprofen(69.5%)<sulfamethoxazole(80.6%)<naproxen(81.4%)<furosemide(89.7%)<citalopram(91.7%)<diclofenac(91.9%)<atorvastatin(>94.3%)<lorazepam(97.2%).Re-moval of fluorinated antibiotics occurred at>90%efficiency.Overall,these data indicate that the size,and thus the catalytic activity of the NPs can be steered and that the removal of challengingmicropollutants at environmentally relevant concentrations can be achieved through the use of bio-Pd NPs.展开更多
The purpose of the investigation is the study of the physico-chemical properties and electro-catalytic characteristics of the Nafion and MF-4SK membranes with the author’s nanoparticles (A. Revina, 2008) incorporated...The purpose of the investigation is the study of the physico-chemical properties and electro-catalytic characteristics of the Nafion and MF-4SK membranes with the author’s nanoparticles (A. Revina, 2008) incorporated into the perfluoro- sulphonated cationic membranes. An important advance in the creation of new nano-composite materials with poly-functional activity is the inclusion of nanoparticles of various metals (Pd, Pt, Ag) in these membranes. Polymer ion exchange membranes represent widely applicable materials in various areas of modern nanotechnologies. The obtained nanocomposites on the base of included nanoparticles have the perspective properties and polyfunctional activity for the applications.展开更多
Formic acid(FA)has come to be considered a potential candidate for hydrogen storage,and the development of efficient catalysts for H2releasing is crucial for realizing the sustainable process from FA.Herein,we have de...Formic acid(FA)has come to be considered a potential candidate for hydrogen storage,and the development of efficient catalysts for H2releasing is crucial for realizing the sustainable process from FA.Herein,we have developed the ultrafine Pd nanoparticle(NPs)with amine-functionalized carbon as a support,which was found to show an excellent catalytic activity in H_(2)generation from FA dehydrogenation.The synergetic mechanism between amine-group and Pd active site was demonstrated to facilitate H2generation byβ-hydride elimination.Moreover,the texture of support for Pd NPs also plays an important role in determining the reactivity of FA,since the diffusion of gaseous products makes the kinetics of diffusion as a challenge in this high performance Pd catalysts.As a result,the as-prepared Pd/NH_(2)-TPC catalyst with the small sized Pd nanoparticles and the hierarchically porous structures shows a turnover of frequency(TOF)value of 4312 h^(-1)for the additive-free FA dehydrogenation at room temperature,which is comparable to the most promising heterogeneous catalysts.Our results demonstrated that the intrinsic catalytic activities of active site as well as the porous structure of support are both important factors in determining catalytic performances in H2generation from FA dehydrogenation,which is also helpful to develop high-activity catalysts for other advanced gas-liquid-solid reactions systems.展开更多
文摘Monodisperse Ni/Pd core/shell nanoparticles (NPs) have been synthesized by sequential reduction of nickel(II) acetate and palladium(II) bromide in oleylamine (OAm) and trioctylphosphine (TOP). The Ni/Pd NPs have a narrow size distribution with a mean particle size of 10 nm and a standard deviation of 5% with respect to the particle diameter. Mechanistic studies showed that the presence of TOP was essential to control the reductive decomposition of Ni-TOP and Pd-TOP, and the formation of Ni/Pd core/shell NPs. Using the current synthetic protocol, the composition of the Ni/Pd within the core/shell structure can be readily tuned by simply controlling the initial molar ratio of the Ni and Pd salts. The as-synthesized Ni/Pd core/shell NPs were supported on graphene (G) and used as catalyst in Suzuki-Miyaura cross-coupling reactions. Among three different kinds of Ni/Pd NPs tested, the Ni/Pd (Ni/Pd = 3/2) NPs were found to be the most active catalyst for the Suzuki-Miyaura cross-coupling of arylboronic acids with aryl iodides, bromides and even chlorides in a dimethylformamide/water mixture by using K2CO3 as a base at 110 ℃. The G-Ni/Pd was also stable and reusable, providing 98% conversion after the 5th catalytic run without showing any noticeable Ni/Pd composition change. The G-Ni/Pd structure reported in this paper combines both the efficiency of a homogeneous catalyst and the durability of a heterogeneous catalyst, and is promising catalyst candidate for various Pd-based catalytic applications.
文摘An important area of research in nanotechnology deals with the synthesis of nanoparticles of different chemical compositions,sizes and controlled monodispersity.Currently,there is a growing need to develop environmentally benign nanoparticle synthesis in which no toxic chemicals are used in the synthesis protocol.Palladium nanoparticles(Pd Np) are of interest because of their catalytic properties and affinity for hydrogen.Our protocol for the phyto-synthesis of Pd Np under moderate p H and room temperature offers a new means to develop environmentally benign nanoparticles.Solanum trilobatum is enlightened in our present study as it is enriched with phytochemicals to reduce palladium chloride ions.Poly MVA a dietary supplement based on the nontoxic chemotherapeutic lipoic acid-palladium complex(LA-Pd) is been hypothesized as the new paradigm of cancer therapy.Hence forth we successfully conjugated lipoic acid(S-Pd Np-LA) and vitamins(S-Pd Np-Vitamin-LA) to palladium nanoparticles synthesised from Solanum trilobatum leaf extract.These nanoparticles(S-Pd Np,S-Pd Np-LA,S-Pd Np-Vitamin-LA) were characterized with UV-Vis Spectroscopy,SEM and FTIR analysis,which revealed that S-Pd Np are polydisperse and of different morphologies ranging from 60?70 nm(S-Pd Np),65?80 nm(S-Pd Np-LA) and 75?100 nm(S-Pd Np-Vitamin-LA) in size.
基金This work was supported by the National Basic Research Program of China (Nos. 2011CBA00508 and 2015CB932301), the National Natural Science Foundation of China (Nos. 21171142, 21171141, 21131005, and 21333008), and the program for New Century Excellent Talents in University (No. NCET-11-0294). X. Y. W. is grateful for the support of NFFTBS (No. J1310024).
文摘Researchers appear to have neglected a special form of crystallites, pentagonal cyclic twinning, in which an obvious two-dimensional lattice expansion exists leading to novel physical-chemical properties associated with the changes in geometric and electronic structures. Using the storage and release of hydrogen in Pd nanocrystals as a probe, we have found that icosahedral pentagonal cyclic twinned Pd nanocrystals had distinct hydrogen storage properties, due to the two-dimensional lattice expansions, quite different from those of the octahedral single crystalline counterpart. In addition, the two-dimensional lattice expansion in pentagonal cyclic twinned Pd nanocrystals causes a change in electronic structure, which results in novel catalytic properties involving in situ formation of PdHx pentagonal cyclic twinned nanocrystals.
基金supported by the National Key R&D Program of China(2018YFB0604804)the National Natural Science Foundation of China(21603254,21703127,21703276)+1 种基金the Strategic Program of Coal-based Technology of Shanxi Province(MQ2014-11,MQ2014-10)the Key Research Program of the Chinese Academy of Sciences(KFZD-SW-410)
基金supported by the National Key R&D Program of China(No.2022YFA1503501)the National Natural Science Foundation of China(Nos.22088101 and U21A20329)+2 种基金Program of Shanghai Academic Research Leader(No.21XD1420800)Shanghai Pilot Program for Basic Research-FuDan University 21TQ1400100(21TQ008)“Shuguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.22SG02).
文摘Highly dispersed Pd/N-doped carbon dots(Pd/NCDs)were successfully immobilized in the mesoporous channels of amino-functionalized dendritic mesoporous silica nanospheres(NMS).The synthesized Pd/NCDs@NMS catalyst exhibits outstanding performance in the catalytic reduction of 4-nitrophenol(4-NP),achieving a turnover frequency of 1461.8 mol·molPd^(-1)·h^(-1),with the conversion rate remaining above 80%after 11 cycles.Experiments and density functional theory calculations reveal that the NCDs significantly affect the electronic structure of Pd nanoparticles,leading to changes in the energy barriers for the adsorption of 4-NP at the Pd sites and the conversion of 4-NP reaction intermediates,which is a key factor contributing to the catalytic performance.This study offers a new strategy for synthesizing carbon-dot-modified metal-based catalysts.
基金This work was supported by the N ational Natural Science Foundation of C hina(No.91963109)the Fundamental Research Funds for the C entral Universities(No.2172019kfyRCPY100).The authors thank the Analytical and Testing Center of HUST for allowing the use of its help and facilities for XRD and XPSThis research used resources of the UCIM RI facilities and the Center for Functional Nanomaterials,which is a U.S.DOE Office of Science Facility,at Brookhaven National Laboratory under Contract No.DE-SC0012704.
文摘Developing highly efficient non-R catalysts for fuel cells and metal-air batteries is highly desirable but still challenging due to the sluggish oxygen reduction reaction(ORR).Herein,a facile and efficient strategy is demonstrated to prepare N-doped carbon encapsulated ordered Pd-Fe intermetallic(O-Pd-Fe@NC/C)nanoparticles via a one-step thermal annealing method.The obtained O-Pd-Fe@NC/C nanoparticles show enhanced ORR activity,durability and anti-poisoning capacity in both acid and alkaline medium.When O-Pd-Fe@NC/C serving as cathode catalyst for Zn-air battery,it exhibits higher voltage platform and superior cycling performance with respect to the Zn-air battery based on the mixture of Pt/C and Ir/C catalysts.The enhanced electrocatalytic performance can be ascribed to the formation of face-centered tetragonal(fct)Pd-Fe nanoparticles,the protective action of the N-doped carbon layer and the interface confinement effect between them.The in situ formed N-doped carbon shell not only restrains the Pd-Fe ordered intermetallics from aggregating effectively during the thermal annealing process,but also provides a strong anchoring effect to avoid the detachment of Pd-Fe nanoparticles from the carbon support during the potential cycling.This facile carbon encapsulation strategy may also be extended to the preparation of a wide variety of N-doped carbon encapsulated intermetallic compounds for fuel cell application.
文摘Palladium (Pd) nanoparticles were synthesized using protein rich soybean leaf extract based biological process. Reduction of palladium ions by soybean leaf extract was examined by UV-visible spectroscopic technique. It was believed that the proteins and some of the amino acids that are exist in soybean leaf extracts were actively involved in the reduction of palladium ions. Further it was confirmed by Fourier transformations infrared spectroscopic (FTIR) analysis. These amino acids are not only involving in the reduction of palladium ions but also acting as surfactants that inhibits the rapid agglomeration. The phase purity of the synthesized palladium nanoparticles was investigated through X-Ray Diffraction (XRD) analysis and the obtained pattern was compared with JCPDS data. Transmission electron microscopic (TEM) images of the palladium particles were recorded and the particle size was found to be ~15 nm.
基金The ELECTRA project has received funding from European Union’s Horizon 2020 research and innovation programunder grant agreement No.826244Eduardo Bolea-Fernandez thanks FWO-Vlaanderen for his postdoctoral grant(No.12ZA320N),The authors would like to thank Victor Lobanov,Mingsheng Jia,and Hira Khan for critically reading the manuscript.
文摘Biogenic palladium nanoparticles(bio-Pd NPs)are used for the reductive transformation and/or dehalogenation of persistent micropollutants.In this work,H2(electron donor)was produced in situ by an electrochemical cell,permitting steered production of differently sized bio-Pd NPs.The catalytic activity was first assessed by the degradation of methyl orange.The NPs showing the highest catalytic activity were selected for the removal of micropollutants from secondary treated municipal wastewater.The synthesis at different H2 flow rates(0.310 L/hr or 0.646 L/hr)influenced the bio-Pd NPs size.The NPs produced over 6 hr at a lowH2 flow rate had a larger size(D50=39.0 nm)than those produced in 3 hr at a high H2 flow rate(D50=23.2 nm).Removal of 92.1%and 44.3%of methyl orange was obtained after 30 min for the NPs with sizes of 39.0 nm and 23.2 nm,respectively.Bio-Pd NPs of 39.0 nm were used to treat micropollutants present in secondary treated municipal wastewater at concentrations ranging fromμg/L to ng/L.Effective removal of 8 compounds was observed:ibuprofen(69.5%)<sulfamethoxazole(80.6%)<naproxen(81.4%)<furosemide(89.7%)<citalopram(91.7%)<diclofenac(91.9%)<atorvastatin(>94.3%)<lorazepam(97.2%).Re-moval of fluorinated antibiotics occurred at>90%efficiency.Overall,these data indicate that the size,and thus the catalytic activity of the NPs can be steered and that the removal of challengingmicropollutants at environmentally relevant concentrations can be achieved through the use of bio-Pd NPs.
基金supported by the National Natural Science Foundation of China(61904023 and 11974063)the Natural Science Foundation of Chongqing(cstc2019jcyj-bsh X0078)。
文摘The purpose of the investigation is the study of the physico-chemical properties and electro-catalytic characteristics of the Nafion and MF-4SK membranes with the author’s nanoparticles (A. Revina, 2008) incorporated into the perfluoro- sulphonated cationic membranes. An important advance in the creation of new nano-composite materials with poly-functional activity is the inclusion of nanoparticles of various metals (Pd, Pt, Ag) in these membranes. Polymer ion exchange membranes represent widely applicable materials in various areas of modern nanotechnologies. The obtained nanocomposites on the base of included nanoparticles have the perspective properties and polyfunctional activity for the applications.
基金funded by the Natural Science Basic Research Program of Shaanxi(2021JCW-20)the Key Research and Development Program of Shaanxi(2020ZDLGY11-06)+1 种基金the Scientific Research Plan Projects of Shaanxi Education Department(20JS014)the Scientific Research Project of City-University Co-construction of Shaanxi Province(SXC-2108)。
文摘Formic acid(FA)has come to be considered a potential candidate for hydrogen storage,and the development of efficient catalysts for H2releasing is crucial for realizing the sustainable process from FA.Herein,we have developed the ultrafine Pd nanoparticle(NPs)with amine-functionalized carbon as a support,which was found to show an excellent catalytic activity in H_(2)generation from FA dehydrogenation.The synergetic mechanism between amine-group and Pd active site was demonstrated to facilitate H2generation byβ-hydride elimination.Moreover,the texture of support for Pd NPs also plays an important role in determining the reactivity of FA,since the diffusion of gaseous products makes the kinetics of diffusion as a challenge in this high performance Pd catalysts.As a result,the as-prepared Pd/NH_(2)-TPC catalyst with the small sized Pd nanoparticles and the hierarchically porous structures shows a turnover of frequency(TOF)value of 4312 h^(-1)for the additive-free FA dehydrogenation at room temperature,which is comparable to the most promising heterogeneous catalysts.Our results demonstrated that the intrinsic catalytic activities of active site as well as the porous structure of support are both important factors in determining catalytic performances in H2generation from FA dehydrogenation,which is also helpful to develop high-activity catalysts for other advanced gas-liquid-solid reactions systems.