The Late Triassic to Paleogene (T3-E) basin occupies an area of 143100 km^2, being the sixth area of the whole of SE China; the total area of synchronous granitoid is about 127300 km^2; it provides a key for underst...The Late Triassic to Paleogene (T3-E) basin occupies an area of 143100 km^2, being the sixth area of the whole of SE China; the total area of synchronous granitoid is about 127300 km^2; it provides a key for understanding the tectonic evolution of South China. From a new 1:1500000 geological map of the Mesozoic-Cenozoic basins of SE China, combined with analysis of geometrical and petrological features, some new insights of basin tectonics are obtained. Advances include petrotectonic assemblages, basin classification of geodynamics, geometric features, relations of basin and range. According to basin-forming geodynamical mechanisms, the Mesozoic-Cenozoic basin of SE China can be divided into three types, namely: 1) para-foreland basin formed from Late Triassic to Early Jurassic (T3-J1) under compressional conditions; 2) rift basins formed during the Middle Jurassic (J2) under a strongly extensional setting; and 3) a faulted depression formed during Early Cretaceous to Paleogene (K1-E) under back-arc extension action. From the rock assemblages of the basin, the faulted depression can be subdivided into a volcanic-sedimentary type formed mainly during the Early Cretaceous (K1) and a red -bed type formed from Late Cretaceous to Paleogene (K2-E). Statistical data suggest that the area of all para-foreland basins (T3-J1) is 15120 km^2, one of rift basins (J2) occupies 4640 km^2, and all faulted depressions equal to 124330 km^2 including the K2-E red-bed basins of 37850 km^2. The Early Mesozoic (T3-J1) basin and granite were mostly co-generated under a post-collision compression background, while the basins from Middle Jurassic to Paleogene (J2-E) were mainly constrained by regional extensional tectonics. Three geological and geographical zones were surveyed, namely: 1) the Wuyishan separating zone of paleogeography and climate from Middle Jurassic to Tertiary; 2) the Middle Jurassic rift zone; and 3) the Ganjiang separating zone of Late Mesozoic volcanism. Thre展开更多
Three Schizolepis species collected from the Lower Cretaceous layer of the Huolinhe Basin, Inner Mongolia, China are described. These fossils are Schizolepis longipetiolus Xu XH et Sun BN sp. nov., which is a new spec...Three Schizolepis species collected from the Lower Cretaceous layer of the Huolinhe Basin, Inner Mongolia, China are described. These fossils are Schizolepis longipetiolus Xu XH et Sun BN sp. nov., which is a new species, Schizolepis cf. heilongjiangensis Zheng et Zhang, and Schizolepis neimengensis Deng. The new species is a well-preserved female cone, slender and cylindrical in shape. The seed-scale complexes have long petioles and are arranged on the cone axis loosely and helically. The seed scales are divided into two lobes from the base. Each lobe is semicircular or elongate ligulate in shape, widest at the middle or the lower middle part, with an obtuse or bluntly pointed apex. The inner margin is almost straight and the outer margin is strongly arched. On the surface of the lobe, there are longitudinal and somewhat radial striations from the base to the margin. The seed is borne on the adaxial surface at the base or middle of each lobe. Schizolepis was estabfished in 1847, and, although more than twenty species have been discovered and reported, its phylogenetic position is controversial because of the imperfection of fossils. Most authors have considered there to be a close evolutionary relationship between Schizolepis and extant Pinaceae. Here, we analyze characteristics and compare Schizolepis with Picea crassifolia Kom, which is morphologically most similar to Schizolepis. The results indicate that the genus probably has a distant evolutionary relationship with extant Pinaceae. A detailed statistical analysis of the global paleogeographic distribution of Schizolepis showed that all the fossils of this genus appeared in strata ranging from the Upper Triassic to the Lower Cretaceous in the North Hemisphere, being rare in the Upper Triassic and Lower Jurassic, but being very common from the Middle Jurassic to the Lower Cretaceous, and particularly abundant in the Lower Cretaceous. According to the statistical results, we speculate that the genus originated in Europe in the Late Triassic then spread from E展开更多
The composition and geological evolution of pre-Cryogenian material in the Tibetan Plateau and its surrounding areas have played an important role in studying the formation and evolution of early supercontinents on Ea...The composition and geological evolution of pre-Cryogenian material in the Tibetan Plateau and its surrounding areas have played an important role in studying the formation and evolution of early supercontinents on Earth.This paper systematically summarizes the characteristics of pre-Cryogenian sedimentation,paleontology,magmatism,and metamorphism in the Tibetan Plateau and its surrounding areas.Based on existing data,the records of pre-Cryogenian sedimentation and paleontology are mainly concentrated in the Meso-Neoproterozoic,with relatively few records from the Paleoproterozoic or earlier.The oldest geological record is the Hadean detrital zircons in the metamorphosed sedimentary rocks of the Himalaya and Qamdo areas(ca.4.0 Ga).The Tibetan Plateau and surrounding areas preserve records related to the formation and evolution of the Kenor supercraton,and the Columbia,Rodinia,and Gondwana supercontinents.Pre-Cryogenian basements can be divided into three types:Tarim-,Yangtze-,and Lhasa-type.The Tarim-type basement has a paleogeographic affinity with the northern margins of the Australian and Indian continents and lacks detrital zircon age peaks and magmatic-metamorphic records related to the Rodinia assembly(ca.1.3-0.9 Ga).The Yangtze-type basement records volcanic activity related to global cooling in the latest pre-Cryogenian period and contains Meso-Neoproterozoic stromatolite and micropaleoflora fossils,as well as magmaticmetamorphic records related to Rodinia assembly(ca.1.1-1.0 Ga).The Lhasa-type basement is characterized by Neoproterozoic rift-related sediment records(ca.900 Ma)and high-pressure metamorphic events(ca.650 Ma),with a prominent peak of detrital zircon ages of ca.1.2-1.1 Ga.It is likely to have a paleogeographic affinity with the African continent.展开更多
Lacustrine turbidite of Chang-7 Member in the studied area consists of sihstone and fine sandstone with respect to grain size, which is feldspathic lithie sandstone, syrosem arkose and arkose with respect to mineral c...Lacustrine turbidite of Chang-7 Member in the studied area consists of sihstone and fine sandstone with respect to grain size, which is feldspathic lithie sandstone, syrosem arkose and arkose with respect to mineral constitution affected by provenance. There are such apparent signatures as lithology, sedimentary structure, sedimentary sequence and well logs, to recognize turbidite. During the paleogeographic evolution of Chang-7 Member, lake basin and deep lake are both at their maximum extent during Chang-73 stage, resulting in the deposition of Zhangjiatan shale with widespread extent and of turbidite with fragmental-like. Deep lake line is gradually moving toward lake center and turbidite sand bodies are gradually turning better with better lateral continuity, connectivity and more thickness, from stages of Chang-73, Chang-72 and Chang-7t, which can be favorable reservoir in deep-water.展开更多
基金The support of the National Science Foundation of China (grant No. 40132010, No. 40634022, No. 40221301, No. 40572118) is gratefully acknowledged.
文摘The Late Triassic to Paleogene (T3-E) basin occupies an area of 143100 km^2, being the sixth area of the whole of SE China; the total area of synchronous granitoid is about 127300 km^2; it provides a key for understanding the tectonic evolution of South China. From a new 1:1500000 geological map of the Mesozoic-Cenozoic basins of SE China, combined with analysis of geometrical and petrological features, some new insights of basin tectonics are obtained. Advances include petrotectonic assemblages, basin classification of geodynamics, geometric features, relations of basin and range. According to basin-forming geodynamical mechanisms, the Mesozoic-Cenozoic basin of SE China can be divided into three types, namely: 1) para-foreland basin formed from Late Triassic to Early Jurassic (T3-J1) under compressional conditions; 2) rift basins formed during the Middle Jurassic (J2) under a strongly extensional setting; and 3) a faulted depression formed during Early Cretaceous to Paleogene (K1-E) under back-arc extension action. From the rock assemblages of the basin, the faulted depression can be subdivided into a volcanic-sedimentary type formed mainly during the Early Cretaceous (K1) and a red -bed type formed from Late Cretaceous to Paleogene (K2-E). Statistical data suggest that the area of all para-foreland basins (T3-J1) is 15120 km^2, one of rift basins (J2) occupies 4640 km^2, and all faulted depressions equal to 124330 km^2 including the K2-E red-bed basins of 37850 km^2. The Early Mesozoic (T3-J1) basin and granite were mostly co-generated under a post-collision compression background, while the basins from Middle Jurassic to Paleogene (J2-E) were mainly constrained by regional extensional tectonics. Three geological and geographical zones were surveyed, namely: 1) the Wuyishan separating zone of paleogeography and climate from Middle Jurassic to Tertiary; 2) the Middle Jurassic rift zone; and 3) the Ganjiang separating zone of Late Mesozoic volcanism. Thre
基金supported by the National Basic Research Program of China (973 Program No. 2012CB822003)the National Natural Science Foundation of China (Grant 41172022)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant 20120211110022)
文摘Three Schizolepis species collected from the Lower Cretaceous layer of the Huolinhe Basin, Inner Mongolia, China are described. These fossils are Schizolepis longipetiolus Xu XH et Sun BN sp. nov., which is a new species, Schizolepis cf. heilongjiangensis Zheng et Zhang, and Schizolepis neimengensis Deng. The new species is a well-preserved female cone, slender and cylindrical in shape. The seed-scale complexes have long petioles and are arranged on the cone axis loosely and helically. The seed scales are divided into two lobes from the base. Each lobe is semicircular or elongate ligulate in shape, widest at the middle or the lower middle part, with an obtuse or bluntly pointed apex. The inner margin is almost straight and the outer margin is strongly arched. On the surface of the lobe, there are longitudinal and somewhat radial striations from the base to the margin. The seed is borne on the adaxial surface at the base or middle of each lobe. Schizolepis was estabfished in 1847, and, although more than twenty species have been discovered and reported, its phylogenetic position is controversial because of the imperfection of fossils. Most authors have considered there to be a close evolutionary relationship between Schizolepis and extant Pinaceae. Here, we analyze characteristics and compare Schizolepis with Picea crassifolia Kom, which is morphologically most similar to Schizolepis. The results indicate that the genus probably has a distant evolutionary relationship with extant Pinaceae. A detailed statistical analysis of the global paleogeographic distribution of Schizolepis showed that all the fossils of this genus appeared in strata ranging from the Upper Triassic to the Lower Cretaceous in the North Hemisphere, being rare in the Upper Triassic and Lower Jurassic, but being very common from the Middle Jurassic to the Lower Cretaceous, and particularly abundant in the Lower Cretaceous. According to the statistical results, we speculate that the genus originated in Europe in the Late Triassic then spread from E
基金supported by the Chinese Geological Survey Project(Grant No.DD20221630)the National Key Research and Development Project of China(Grant No.2021YFC2901901)+3 种基金the Second Tibetan Plateau Scientific Expedition and Research(STEP)(Grant No.2019QZKK0703)the National Natural Science Foundation of China(Grant Nos.42072268 and 41872240)the Chinese Academy of Geological Sciences(Grant No.J2202)Australian Research(Grant No.FL160100168)。
文摘The composition and geological evolution of pre-Cryogenian material in the Tibetan Plateau and its surrounding areas have played an important role in studying the formation and evolution of early supercontinents on Earth.This paper systematically summarizes the characteristics of pre-Cryogenian sedimentation,paleontology,magmatism,and metamorphism in the Tibetan Plateau and its surrounding areas.Based on existing data,the records of pre-Cryogenian sedimentation and paleontology are mainly concentrated in the Meso-Neoproterozoic,with relatively few records from the Paleoproterozoic or earlier.The oldest geological record is the Hadean detrital zircons in the metamorphosed sedimentary rocks of the Himalaya and Qamdo areas(ca.4.0 Ga).The Tibetan Plateau and surrounding areas preserve records related to the formation and evolution of the Kenor supercraton,and the Columbia,Rodinia,and Gondwana supercontinents.Pre-Cryogenian basements can be divided into three types:Tarim-,Yangtze-,and Lhasa-type.The Tarim-type basement has a paleogeographic affinity with the northern margins of the Australian and Indian continents and lacks detrital zircon age peaks and magmatic-metamorphic records related to the Rodinia assembly(ca.1.3-0.9 Ga).The Yangtze-type basement records volcanic activity related to global cooling in the latest pre-Cryogenian period and contains Meso-Neoproterozoic stromatolite and micropaleoflora fossils,as well as magmaticmetamorphic records related to Rodinia assembly(ca.1.1-1.0 Ga).The Lhasa-type basement is characterized by Neoproterozoic rift-related sediment records(ca.900 Ma)and high-pressure metamorphic events(ca.650 Ma),with a prominent peak of detrital zircon ages of ca.1.2-1.1 Ga.It is likely to have a paleogeographic affinity with the African continent.
文摘Lacustrine turbidite of Chang-7 Member in the studied area consists of sihstone and fine sandstone with respect to grain size, which is feldspathic lithie sandstone, syrosem arkose and arkose with respect to mineral constitution affected by provenance. There are such apparent signatures as lithology, sedimentary structure, sedimentary sequence and well logs, to recognize turbidite. During the paleogeographic evolution of Chang-7 Member, lake basin and deep lake are both at their maximum extent during Chang-73 stage, resulting in the deposition of Zhangjiatan shale with widespread extent and of turbidite with fragmental-like. Deep lake line is gradually moving toward lake center and turbidite sand bodies are gradually turning better with better lateral continuity, connectivity and more thickness, from stages of Chang-73, Chang-72 and Chang-7t, which can be favorable reservoir in deep-water.