The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after lfuid percussion injury. Diazepam can inhibit the hy-perexcitability of rat hippocampal ...The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after lfuid percussion injury. Diazepam can inhibit the hy-perexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment signiifcantly increased the slope of input-output curves in rat neurons after lfuid per-cussion injury. Diazepam signiifcantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the lfuid per-cussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.展开更多
Curcumin has been shown to significantly improve spatial memory impairment induced by HIV-1 gp 120 V3 in rats, but the electrophysiological mechanism remains unknown. Using extracellular microelectrode recording techn...Curcumin has been shown to significantly improve spatial memory impairment induced by HIV-1 gp 120 V3 in rats, but the electrophysiological mechanism remains unknown. Using extracellular microelectrode recording techniques, this study confirmed that the gp120 V3 loop could suppress long-term potentiation in the rat hippocampal CA1 region and synaptic plasticity, and that curcumin could antagonize these inhibitory effects. Using a Fura-2/AM calcium ion probe, we found that curcumin resisted the effects of the gp120 V3 loop on hippocampal synaptosomes and decreased Ca2+ concentration in synaptosomes. This effect of curcumin was identical to nimodipine, suggesting that curcumin improved the inhibitory effects of gpl20 on synaptic plasticity, ameliorated damage caused to the central nervous system, and might be a potential neuroprotective drug.展开更多
基金supported by the National Natural Science Foundation of China,No.81201984the Scientific Research Project of Shaanxi Provincial Health Department in China,No.2010E03the Yulin Municipal Science and Technology Research and Development Project,No.Sf12-06
文摘The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after lfuid percussion injury. Diazepam can inhibit the hy-perexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment signiifcantly increased the slope of input-output curves in rat neurons after lfuid per-cussion injury. Diazepam signiifcantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the lfuid per-cussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.
基金supported by the National Natural Science Foundation of China,No.81171134 and 81471235a grant from the Introducing Talents of Discipline to Universities,No.B14036+4 种基金a grant from the College Students’Extracurricular Scientific Innovation and Entrepreneurial Activity Research Topic of Jinan University Challenge Cup,No.(2013)27 and (2014)16a grant from the College Students’Extracurricular Scientific Innovation and Entrepreneurial Activity Research Topic of Jinan University in China,No.201410559079,1055914162 and CX14261a grant from the National Basic Research Program of China(973 Program),No.2011CB707501the Science and Technology Foundation of Guangdong Province in China,No.2010B030700016the Natural Science Foundation of Guangdong Province in China,No.2014A030313360
文摘Curcumin has been shown to significantly improve spatial memory impairment induced by HIV-1 gp 120 V3 in rats, but the electrophysiological mechanism remains unknown. Using extracellular microelectrode recording techniques, this study confirmed that the gp120 V3 loop could suppress long-term potentiation in the rat hippocampal CA1 region and synaptic plasticity, and that curcumin could antagonize these inhibitory effects. Using a Fura-2/AM calcium ion probe, we found that curcumin resisted the effects of the gp120 V3 loop on hippocampal synaptosomes and decreased Ca2+ concentration in synaptosomes. This effect of curcumin was identical to nimodipine, suggesting that curcumin improved the inhibitory effects of gpl20 on synaptic plasticity, ameliorated damage caused to the central nervous system, and might be a potential neuroprotective drug.