The vanadium-titanium magnetite concentrate from Panxi region of China was pretreated by high pressure roller grinding( HPRG) and then used in pelletization. Size distribution change of the vanadiumtitanium magnetit...The vanadium-titanium magnetite concentrate from Panxi region of China was pretreated by high pressure roller grinding( HPRG) and then used in pelletization. Size distribution change of the vanadiumtitanium magnetite concentrate after HPRG and the improvement of its green pellet strength were investigated. The results indicated that,besides the increase of fine particles,the vanadium-titanium magnetite concentrate after HPRG had a smaller size ratio of fine particle to coarse particle of 0. 126,meaning a lower porosity,compared with the size ratio of raw material of 0. 157. The concentrate particles were more closely packed when there was a smaller size ratio of fine particle to coarse particle. The particle packing in the green pellets was closer after HPRG,which strengthened the green pellets with an average drop number of 5. 1( drop height of 0. 5 m) and average compressive strength of 13. 1 N per pellet of 11 mm in diameter.展开更多
In the present work, a computer model was developed to simulate random packing of aggregates. For the sake of simplicity, two dimensional situation was considered and all of the aggregates in concrete were assumed as ...In the present work, a computer model was developed to simulate random packing of aggregates. For the sake of simplicity, two dimensional situation was considered and all of the aggregates in concrete were assumed as ellipse. 2D elliptical models of random packing were firstly demonstrated in periodic boundary condition. In addition, the ellipse random packing model was employed for the influence of aspect ratios on the packing fraction of ellipses. The modeling results demonstrate that the packing fraction of ellipses firstly increases then drops down with increasing aspect ratio. The maximal random packing fraction is 0.66 when aspect ratio is 1.04 in the periodic boundary condition.展开更多
Random packings of binary mixtures of spheres and spherocylinders with the same volume and the same diameter were simulated by a sphere assembly model and relaxation algorithm. Simulation results show that, independen...Random packings of binary mixtures of spheres and spherocylinders with the same volume and the same diameter were simulated by a sphere assembly model and relaxation algorithm. Simulation results show that, independently of the component volume fraction, the mixture packing density increases and then decreases with the growth of the aspect ratio of spherocylinders, and the packing density reaches its maximum at the aspect ratio of 0.35. With the same volume particles, results show that the dependence of the mixture packing density on the volume fraction of spherocylinders is approximately linear. With the same diameter particles, the relationship between the mixture packing density and component volume fraction is also roughly linear for short spherocylinders, but when the aspect ratio of spherocylinders is greater than 1.6, the curves turn convex which means the packing of the mixture can be denser than either the sphere or spherocylinder packing alone. To validate the sphere assembly model and relaxation algorithm, binary mixtures of spheres and random packings of spherocylinders were also simulated. Simulation results show the packing densities of sphere mixtures agree with previous prediction models and the results of spherocylinders correspond with the simulation results in literature.展开更多
文摘The vanadium-titanium magnetite concentrate from Panxi region of China was pretreated by high pressure roller grinding( HPRG) and then used in pelletization. Size distribution change of the vanadiumtitanium magnetite concentrate after HPRG and the improvement of its green pellet strength were investigated. The results indicated that,besides the increase of fine particles,the vanadium-titanium magnetite concentrate after HPRG had a smaller size ratio of fine particle to coarse particle of 0. 126,meaning a lower porosity,compared with the size ratio of raw material of 0. 157. The concentrate particles were more closely packed when there was a smaller size ratio of fine particle to coarse particle. The particle packing in the green pellets was closer after HPRG,which strengthened the green pellets with an average drop number of 5. 1( drop height of 0. 5 m) and average compressive strength of 13. 1 N per pellet of 11 mm in diameter.
基金Funded by the National Natural Science Foundation of China (No.50708018)the Chinese Ministry of Education Project ( No.20070286018)the Ministry of Science and Technology of China "973 Project"(No.2009CB623203)
文摘In the present work, a computer model was developed to simulate random packing of aggregates. For the sake of simplicity, two dimensional situation was considered and all of the aggregates in concrete were assumed as ellipse. 2D elliptical models of random packing were firstly demonstrated in periodic boundary condition. In addition, the ellipse random packing model was employed for the influence of aspect ratios on the packing fraction of ellipses. The modeling results demonstrate that the packing fraction of ellipses firstly increases then drops down with increasing aspect ratio. The maximal random packing fraction is 0.66 when aspect ratio is 1.04 in the periodic boundary condition.
基金supported by the National Natural Science Foundation of China (Grant No. 10772005)the National Basic Research Program of China (Grant Nos. 2007CB714603 and 2010CB832701)
文摘Random packings of binary mixtures of spheres and spherocylinders with the same volume and the same diameter were simulated by a sphere assembly model and relaxation algorithm. Simulation results show that, independently of the component volume fraction, the mixture packing density increases and then decreases with the growth of the aspect ratio of spherocylinders, and the packing density reaches its maximum at the aspect ratio of 0.35. With the same volume particles, results show that the dependence of the mixture packing density on the volume fraction of spherocylinders is approximately linear. With the same diameter particles, the relationship between the mixture packing density and component volume fraction is also roughly linear for short spherocylinders, but when the aspect ratio of spherocylinders is greater than 1.6, the curves turn convex which means the packing of the mixture can be denser than either the sphere or spherocylinder packing alone. To validate the sphere assembly model and relaxation algorithm, binary mixtures of spheres and random packings of spherocylinders were also simulated. Simulation results show the packing densities of sphere mixtures agree with previous prediction models and the results of spherocylinders correspond with the simulation results in literature.