期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于小波包熵与Gabor小波变换的管道连续型泄漏源定位 被引量:8
1
作者 王少峰 刘朋真 +1 位作者 王建国 高琳 《仪表技术与传感器》 CSCD 北大核心 2017年第9期98-102,共5页
针对压力管道泄漏声发射信号的含有高频噪声、多模态以及频散现象,影响对泄漏源定位精度的问题。研究了一种基于Gabor小波变换与小波包熵值降噪相结合的方法对泄漏源进行定位。首先对采集的泄漏信号进行小波包熵值降噪以滤除背景噪声,... 针对压力管道泄漏声发射信号的含有高频噪声、多模态以及频散现象,影响对泄漏源定位精度的问题。研究了一种基于Gabor小波变换与小波包熵值降噪相结合的方法对泄漏源进行定位。首先对采集的泄漏信号进行小波包熵值降噪以滤除背景噪声,其次对降噪后的信号进行Gabor小波变换获得其在特定频率下的时间-频率空间分布,确定不同模态信号到达同一个传感器的时间差,并结合压力管道的频散曲线特性确定该频率下不同模态的群速度,最终实现对管道泄漏源的精确定位。 展开更多
关键词 小波包 GABOR小波 压力管道 频散
下载PDF
Where Is Phase Velocity in Minkowski Space?
2
作者 Antony J. Bourdillon 《Journal of Modern Physics》 2024年第10期1555-1566,共12页
In the special theory of relativity, massive particles can travel at neither the speed of light c nor faster. Meanwhile, since the photon was quantized, many have thought of it as a point particle. How pointed? The id... In the special theory of relativity, massive particles can travel at neither the speed of light c nor faster. Meanwhile, since the photon was quantized, many have thought of it as a point particle. How pointed? The idea could be a mathematical device or physical simplification. By contrast, the preceding notion of wave-group duality has two velocities: a group velocity vg and a phase velocity vp. In light vp = vg = c;but it follows from special relativity that, in massive particles, vp > c. The phase velocity is the product of the two best measured variables, and so their product constitutes internal motion that travels, verifiably, faster than light. How does vp then appear in Minkowski space? For light, the spatio-temporal Lorentz invariant metric is s2=c2t2−x2−y2−z2, the same in whatever frame it is viewed. The space is divided into 3 parts: firstly a cone, symmetric about the vertical axis ct > 0 that represents the world line of a stationary particle while the conical surface at s = 0 represents the locus for light rays that travel at the speed of light c. Since no real thing travels faster than the speed of light c, the surface is also a horizon for what can be seen by an observer starting from the origin at time t = 0. Secondly, an inverted cone represents, equivalently, time past. Thirdly, outside the cones, inaccessible space. The phase velocity vp, group velocity vg and speed of light are all equal in free space, vp = vg = c, constant. By contrast, for particles, where causality is due to particle interactions having rest mass mo > 0, we have to employ the Klein-Gordon equation with s2=c2t2−x2−y2−z2+mo2c2. Now special relativity requires a complication: vp.vg = c2 where vg c and therefore vp > c. In the volume outside the cones, causality due to light interactions cannot extend beyond the cones. However, since vp > c and even vp >> c when wavelength λ is long, extreme phase velocities are then limited in their causal effects by the particle uncertainty σ, i.e. to vgt ± σ/ω, where ω is 展开更多
关键词 Event Horizon Scattering Range Wave packet Phase Velocity Group Velocity dispersion Dynamics Quantum Physics
下载PDF
一种基于端到端测量的路径性能参数估计算法 被引量:2
3
作者 刘世栋 张顺颐 +1 位作者 邱恭安 孙雁飞 《电子与信息学报》 EI CSCD 北大核心 2007年第7期1617-1621,共5页
现有的网络性能估计技术不能实现对路径容量和可用带宽的同时测量。该文通过对存在拥塞链路的路径作随机分析,得到了一种对路径可用带宽的近似估计式,并通过对Kapoor(2004)中的方法进行改进,提出了一种基于端到端的可以同时对单拥塞路... 现有的网络性能估计技术不能实现对路径容量和可用带宽的同时测量。该文通过对存在拥塞链路的路径作随机分析,得到了一种对路径可用带宽的近似估计式,并通过对Kapoor(2004)中的方法进行改进,提出了一种基于端到端的可以同时对单拥塞路径的容量及可用带宽进行估算的算法。在较准确估算路径容量的同时,达到了用同一组样本实例同时估计路径容量和可用带宽的目的。仿真验证了算法的有效性和准确性。 展开更多
关键词 网络测量 分组对 背景业务 路径容量 可用带宽 时延差
下载PDF
报文分流最优策略研究 被引量:2
4
作者 周安福 刘敏 李忠诚 《计算机研究与发展》 EI CSCD 北大核心 2009年第4期541-548,共8页
在向下一代互联网络演进的过程中,一个重要的趋势是IP网络将成为语音、视频等应用的主要承载.VoIP是一个重要的语音应用.然而,IP网络的丢包造成了VoIP的服务质量不能得到保证,并且对于VoIP而言,连续丢包对其服务质量的影响要远大于分散... 在向下一代互联网络演进的过程中,一个重要的趋势是IP网络将成为语音、视频等应用的主要承载.VoIP是一个重要的语音应用.然而,IP网络的丢包造成了VoIP的服务质量不能得到保证,并且对于VoIP而言,连续丢包对其服务质量的影响要远大于分散丢包.报文分流是近年来学术界讨论的一种提高VoIP服务质量的方法,其基本思想是把1个VoIP会话的报文分散到多个网络链路传输,从而把连续丢包转化为分散丢包,缓解丢包对VoIP服务质量的影响.然而,目前的研究只局限于用一种特定的分流策略(平均分流)说明报文分流的潜力.报文分流的理论基础,比如报文分流能在多大程度上提高VoIP的服务质量,什么是最优的分流策略等,并不明了.对报文分流的理论基础进行了研究,首次给出了分流策略与VoIP服务质量的定量关系描述,给出并证明了Bernoulli网络丢包模型下的最优分流策略.同时,以ns-2仿真实验验证了该最优分流策略在Gilbert网络丢包模型下的有效性. 展开更多
关键词 VOIP 服务质量 报文集中丢失 报文分流 最优策略
下载PDF
Quantum Mechanics: Internal Motion in Theory and Experiment
5
作者 Antony J. Bourdillon 《Journal of Modern Physics》 CAS 2023年第6期865-875,共11页
Dispersion dynamics applies wave-particle duality, together with Maxwell’s electromagnetism, and with quantization E = hν = ħω (symbol definitions in footnote) and p = h/λ = ħk, to special relativity E<sup>2... Dispersion dynamics applies wave-particle duality, together with Maxwell’s electromagnetism, and with quantization E = hν = ħω (symbol definitions in footnote) and p = h/λ = ħk, to special relativity E<sup>2</sup> = p<sup>2</sup>c<sup>2</sup> + m<sup>2</sup>c<sup>4</sup>. Calculations on a wave-packet, that is symmetric about the normal distribution, are partly conservative and partly responsive. The complex electron wave function is chiefly modelled on the real wave function of an electromagnetic photon;while the former concept of a “point particle” is downgraded to mathematical abstraction. The computations yield conclusions for phase and group velocities, v<sub>p</sub>⋅v<sub>g</sub> = c<sup>2</sup> with v<sub>p</sub> ≥ c because v<sub>g</sub> ≤ c, as in relativity. The condition on the phase velocity is most noticeable when p≪mc. Further consequences in dispersion dynamics are: derivations for ν and λ that are consistently established by one hundred years of experience in electron microscopy and particle accelerators. Values for v<sub>p</sub> = νλ = ω/k are therefore systematically verified by the products of known multiplicands or divisions by known divisors, even if v<sub>p</sub> is not independently measured. These consequences are significant in reduction of the wave-packet by resonant response during interactions between photons and electrons, for example, or between particles and particles. Thus the logic of mathematical quantum mechanics is distinguished from experiential physics that is continuous in time, and consistent with uncertainty principles. [Footnote: symbol E = energy;h = Planck’s constant;ν = frequency;ω = angular momentum;p = momentum;λ = wavelength;k = wave vector;c = speed of light;m = particle rest mass;v<sub>p</sub> = phase velocity;v<sub>g</sub> = group velocity]. 展开更多
关键词 Wave packet REDUCTION Phase Velocity Group Velocity Resonant Response dispersion Dynamics Quantum Physics
下载PDF
Quantum Mechanics: Harmonic Wave-Packets, Localized by Resonant Response in Dispersion Dynamics
6
作者 Antony J. Bourdillon 《Journal of Modern Physics》 CAS 2023年第2期171-182,共12页
From a combination of Maxwell’s electromagnetism with Planck’s law and the de Broglie hypothesis, we arrive at quantized photonic wave groups whose constant phase velocity is equal to the speed of light c = ω/k and... From a combination of Maxwell’s electromagnetism with Planck’s law and the de Broglie hypothesis, we arrive at quantized photonic wave groups whose constant phase velocity is equal to the speed of light c = ω/k and to their group velocity dω/dk. When we include special relativity expressed in simplest units, we find that, for particulate matter, the square of rest mass , i.e., angular frequency squared minus wave vector squared. This equation separates into a conservative part and a uniform responsive part. A wave function is derived in manifold rank 4, and from it are derived uncertainties and internal motion. The function solves four anomalies in quantum physics: the point particle with prescribed uncertainties;spooky action at a distance;time dependence that is consistent with the uncertainties;and resonant reduction of the wave packet by localization during measurement. A comparison between contradictory mathematical and physical theories leads to similar empirical conclusions because probability amplitudes express hidden variables. The comparison supplies orthodox postulates that are compared to physical principles that formalize the difference. The method is verified by dual harmonics found in quantized quasi-Bloch waves, where the quantum is physical;not axiomatic. 展开更多
关键词 Wave packet Reduction Phase Velocity Hidden Variables Young’s Slits Resonant Response dispersion Dynamics Quantum Physics
下载PDF
A Neural Network Method for Traffic Dispersion
7
作者 FengGang LiuZemin 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 1998年第1期1-5,共5页
In packet switched communication networks, traffic between any source destination (SD) pair is expected to be transmitted over multiple paths. In this paper, we focus on the problem how to optimally distribute the l... In packet switched communication networks, traffic between any source destination (SD) pair is expected to be transmitted over multiple paths. In this paper, we focus on the problem how to optimally distribute the load on a set of paths so that the overall network performance is maximized. This problem is first formulated as a nonlinear programming problem and then we propose a neural network (NN) to solve it. The NN architecture is discussed in detail. At last, we verify the effectiveness of our approach by applying it to a specific network model. The experimental results demonstrate that our method can yield optimal solutions with good stability. 展开更多
关键词 traffic dispersion neural network packet switched network
原文传递
Relativistic Approximations for Quantization and Harmony in the Schrödinger Equation, and Why Mechanics Is Quantized
8
作者 Antony J. Bourdillon 《Journal of Modern Physics》 2020年第12期1926-1937,共12页
The initial purpose is to add two physical origins for the outstandingly clear mathematical description that Dirac has left in his Principles of Quantum Mechanics. The first is the “internal motion” in the wave func... The initial purpose is to add two physical origins for the outstandingly clear mathematical description that Dirac has left in his Principles of Quantum Mechanics. The first is the “internal motion” in the wave function of the electron that is now expressed through dispersion dynamics;the second is the physical origin for mathematical quantization. Bohr’s model for the hydrogen atom was “the greatest single step in the development of the theory of atomic structure.” It leads to the Schrodinger equation which is non-relativistic, but which conveniently equates together momentum and electrostatic potential in a representation containing mixed powers. Firstly, we show how the equation is expansible to approximate relativistic form by applying solutions for the dilation of time in special relativity, and for the contraction of space. The adaptation is to invariant “harmonic events” that are digitally quantized. Secondly, the internal motion of the electron is described by a stable wave packet that implies wave-particle duality. The duality includes uncertainty that is precisely described with some variance from Heisenberg’s axiomatic limit. Harmonic orbital wave functions are self-constructive. This is the physical origin of quantization. 展开更多
关键词 Wave packet Wave-Particle Duality HARMONY RELATIVITY dispersion Dynamics
下载PDF
Dispersion Dynamical Magnetic Radius in Intrinsic Spin Equals the Compton Wavelength
9
作者 Antony J. Bourdillon 《Journal of Modern Physics》 2018年第13期2295-2307,共13页
Because magnetic moment is spatial in classical magnetostatics, we progress beyond the axiomatic concept of the point particle electron in physics. Orbital magnetic moment is well grounded in spherical harmonics in a ... Because magnetic moment is spatial in classical magnetostatics, we progress beyond the axiomatic concept of the point particle electron in physics. Orbital magnetic moment is well grounded in spherical harmonics in a central field. There, quantum numbers are integral. The half-integral spinor moment appears to be due to cylindrical motion in an external applied magnetic field;when this is zero , the spin states are degenerate. Consider lifting the degeneracy by diamagnetism in the cylindrical magnetic field: a uniquely derived electronic magnetic radius shares the identical value to the Compton wavelength. 展开更多
关键词 Magnetic RADIUS INTRINSIC SPIN COMPTON WAVELENGTH dispersion Dynamics Stable Wave packet Special Relativity Propagation Transverse Plane Functions of Relativistic Free Particles Quantum Physics Quantum Mechanics
下载PDF
Reduction of Superconducting Wave Packets in Dispersion Dynamics
10
作者 Antony J. Bourdillon 《Journal of Modern Physics》 2020年第3期365-377,共13页
Two problems in solid state physics and superconductivity are addressed by applications of dispersion dynamics. The first is the Hall effect. The dynamics of charges that yield positive Hall coefficients in material h... Two problems in solid state physics and superconductivity are addressed by applications of dispersion dynamics. The first is the Hall effect. The dynamics of charges that yield positive Hall coefficients in material having no mobile positive charges have always been problematic The effect requires both electric and magnetic response, but magnetic deflection is only possible in mobile charges. In high temperature superconductors, these charges must be electrons. Contrary to Newton’s second law, their acceleration is reversed in crystal fields that dictate negative dispersion. This is evident in room temperature measurements, but a second problem arises in supercurrents at low temperatures. The charge dynamics in material having zero internal electric field because of zero resistivity;and zero magnetic field because of the Meissner-Ochsenfeld diamagnetism;while the supercurrents themselves have properties of zero net momentum;zero spin;and sometimes, zero charge;are so far from having been resolved that they may never have been addressed. Again, dispersion dynamics are developed to provide solutions given by reduction of the superconducting wave packet. The reduction is here physically analyzed, though it is usually treated as a quantized unobservable. 展开更多
关键词 REDUCTION Wave packet dispersion Dynamics Special RELATIVITY Propagation TRANSVERSE Plane Functions of RELATIVISTIC Free Particles QUANTUM Physics QUANTUM Mechanics
下载PDF
光前驱波 被引量:1
11
作者 杜胜望 《物理》 CAS 北大核心 2013年第5期315-327,共13页
文章回顾了近一百年来光前驱波的研究历史及最新的进展。自爱因斯坦的狭义相对论发表以来,真空中的光速不变原理已经被广泛地接受。然而对光在介质中的传播速度,由于复杂的色散关系,却一直存在不同的解读,尤其是对光载信息传播速度以及... 文章回顾了近一百年来光前驱波的研究历史及最新的进展。自爱因斯坦的狭义相对论发表以来,真空中的光速不变原理已经被广泛地接受。然而对光在介质中的传播速度,由于复杂的色散关系,却一直存在不同的解读,尤其是对光载信息传播速度以及单个光子的运动。光前驱波的研究旨在回答这个问题。作者和其研究团队在最近的研究中找到了前驱波在光学波段的清晰的证据,并首次发现了单光子波包里的光前驱波。研究结果表明,光载信息传播速度不可能超光速,单光子的运动满足真空光速极限原理,即便是在所谓的"超光速"(群速度超光速)介质中。 展开更多
关键词 光速 光前驱波 光子 波包 色散
原文传递
一种改进的基于包对模型的有效带宽测量方法
12
作者 李明杰 张大方 张伟鹏 《计算机工程与科学》 CSCD 2005年第4期71-72,86,共3页
本文通过分析数据包对的分离时间与背景流量之间的关系,提出了一种改进的基于包对模型测量端到端路径有效带宽的方法(ABwPP),可以直接测量路径的有效带宽而不需已知瓶颈带宽。NS 2 上的模拟实验结果表明,该方法是准确有效的。
关键词 计算机网络 数据包 网络带宽 有效带宽测量方法 包对模型
下载PDF
原子链与弦中波包演化的比较分析
13
作者 邓艳平 田强 《大学物理》 北大核心 2007年第4期58-62,共5页
分析了一维单原子链中与连续弦中的波包的演化过程.弦中的波包以恒定速度移动,且保持形状不变;而原子链中的波包在演化过程中形状不断地发生变化.通过比较分析一维单原子链与弦振动的色散关系,讨论了波包演化的不同以及离散的原子链到... 分析了一维单原子链中与连续弦中的波包的演化过程.弦中的波包以恒定速度移动,且保持形状不变;而原子链中的波包在演化过程中形状不断地发生变化.通过比较分析一维单原子链与弦振动的色散关系,讨论了波包演化的不同以及离散的原子链到连续弦的过渡. 展开更多
关键词 一维单原子链 波包 色散关系
下载PDF
IPv6网络路径容量测量方法研究
14
作者 唐军 裴昌幸 苏博 《计算机科学》 CSCD 北大核心 2011年第B10期312-314,349,共4页
分组离散技术是常用的路径容量测量方法之一,它通常采用连续发送策略来发送测量分组。然而该策略对发送带宽的利用率较低,影响了测量的准确性。针对IPv6网络环境,提出了一种新的基于分片机制的路径容量测量方法。该方法通过构造长度大... 分组离散技术是常用的路径容量测量方法之一,它通常采用连续发送策略来发送测量分组。然而该策略对发送带宽的利用率较低,影响了测量的准确性。针对IPv6网络环境,提出了一种新的基于分片机制的路径容量测量方法。该方法通过构造长度大于路径最大传输单元的原始测量分组,迫使协议栈对该分组进行分片操作,生成长度相等的测量分片序列。实验结果表明,与经典的pathrate工具相比,该方法能够获得更小的源端分组离散以及更好的背景流量抑制能力。 展开更多
关键词 路径容量 分片机制 分组离散 背景流量 网络测量
下载PDF
波包在介质中运动时的群速度及相速度
15
作者 邱森友 《安徽建筑工业学院学报(自然科学版)》 1997年第1期74-77,共4页
首先讨论了群速度和相速度的概念及其求解方法。
关键词 群速度 相速度 波包 色散介质
下载PDF
基于小波包散布熵与Meanshift概率密度估计的轴承故障识别方法研究 被引量:11
16
作者 张雄 张逸轩 +3 位作者 张明 万书亭 何玉灵 豆龙江 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第8期133-140,共8页
为提升轴承故障特征提取精度和运行状态评估准确性,提出一种基于小波包散布熵与Meanshift概率密度估计的诊断方法.首先,采用小波包变换对轴承振动信号数据进行升维,通过计算每个子带的散布熵构建特征矩阵;然后,利用PCA对多维矩阵进行可... 为提升轴承故障特征提取精度和运行状态评估准确性,提出一种基于小波包散布熵与Meanshift概率密度估计的诊断方法.首先,采用小波包变换对轴承振动信号数据进行升维,通过计算每个子带的散布熵构建特征矩阵;然后,利用PCA对多维矩阵进行可视化降维,采用Meanshift无参估计得到训练样本的概率密度最大位置作为聚类中心;最后,通过计算测试样本散布熵坐标与各聚类中心的欧式距离判定测试样本类别归属.采用CWRU和QPZZ-II轴承实验台不同故障类型和故障程度样本数据对所提方法进行验证,结果表明,得益于小波包完备的理论模型和信号频带分解稀疏性,结合散布熵指标对数据样本良好的鲁棒性,所构造的特征矩阵具有较好的类内聚集性和较大的类间距离,同时,Meanshift以概率密度最大化为目标自适应迭代聚类中心和隶属度,可以有效实现对不同数据样本的分类识别. 展开更多
关键词 滚动轴承 小波包散布熵 Meanshift概率密度估计 故障诊断
下载PDF
基于WPT-ESCDE的电气设备运输车轮对轴承故障特征提取方法 被引量:5
17
作者 张敏 万书亭 +2 位作者 王萱 蔡伟 张雄 《中国工程机械学报》 北大核心 2023年第2期183-188,共6页
变压器等电气设备的吊装、转运环节是疏于监控的薄弱环节,极易发生机械冲击引起的二次损伤,而轨道运输车的轮对承载特性及轮对轴承运行状态关乎运输安全。综合考虑轨道运输车轮对轴承运输环境,分析振动信号中存在的主要成分及特征,提出... 变压器等电气设备的吊装、转运环节是疏于监控的薄弱环节,极易发生机械冲击引起的二次损伤,而轨道运输车的轮对承载特性及轮对轴承运行状态关乎运输安全。综合考虑轨道运输车轮对轴承运输环境,分析振动信号中存在的主要成分及特征,提出一种基于小波包-包络谱相关散布熵(WPT-ESCDE)的故障特征提取方法。首先,对振动信号的离散时间序列进行小波包分解,并对小波包子带系数进行重构;其次,对每个小波包子带计算平方包络谱,得到离散频率序列,将得到的小波包子带包络谱离散序列看作广义时间序列进行相关分析,得到包络谱相关函数;最后,计算包络谱相关函数的散布熵,筛选最优小波包子带序列进行特征提取。通过仿真分析和QPZZ-Ⅱ旋转机械故障模拟实验台实测信号验证了所提方法的有效性。 展开更多
关键词 电气设备轨道运输车 轮对轴承 振动信号分析 小波包 包络谱相关散布熵
下载PDF
基于小波包Teager散布熵的轨道车辆路基振动特征提取方法研究
18
作者 张敏 孙龙印 +1 位作者 夏拓 张雄 《机械强度》 CAS CSCD 北大核心 2024年第4期771-777,共7页
变压器等电气设备的吊装、转运环节是疏于监控的薄弱环节,极易发生由机械冲击引起的二次损伤。对变压器轨道运输车行进过程中受路基振动引起的冲击响应开展研究。首先,建立了轨道运输车⁃变压器耦合分析模型,利用有限元分析得出轨道运输... 变压器等电气设备的吊装、转运环节是疏于监控的薄弱环节,极易发生由机械冲击引起的二次损伤。对变压器轨道运输车行进过程中受路基振动引起的冲击响应开展研究。首先,建立了轨道运输车⁃变压器耦合分析模型,利用有限元分析得出轨道运输车⁃变压器耦合分析模型在路基振动作用下的核心响应区域。然后,提出了一种基于小波包散布熵的非周期瞬态响应特征提取方法。该方法通过小波包最优子带树结构对整个频带进行良好的稀疏性分割,将包含多种信息的一维数据分解到不同维度,实现信号的有效分解,通过Teager能量算子(Teager Energy Operator,TEO)增强子带信号的冲击特性,利用散布熵选取包含冲击响应特征的子带信号。最后,通过路基振动仿真信号验证了所提方法能够准确从耦合路径干扰中提取出非周期性瞬态冲击响应成分。 展开更多
关键词 变压器 轨道运输车 路基振动 有限元分析 小波包 Teager 散布熵
下载PDF
相速、群速和能量传播速度 被引量:2
19
作者 蒲明刚 《成都信息工程学院学报》 1993年第4期116-119,共4页
本文论述群速和能量传播速度的基本概念,并对相速、群速及能量传播速度的联系及区别作了讨论。
关键词 相速 群速 能量传播速度 波群 波包中 频散
下载PDF
基于小波包散布熵-mRMR特征选取与HHO-KELM的轴承故障诊断方法 被引量:1
20
作者 宋明瑞 郭佑民 +1 位作者 刘运航 郭啸 《噪声与振动控制》 CSCD 北大核心 2023年第5期154-160,共7页
针对3层小波包分解(Wavelet Packet Decomposition,WPD)忽略了1和2层分解信号以及核极限学习机(Kernel Extreme Learning Machine,KELM)参数选择困难的问题,提出一种基于小波包散布熵-mRMR特征选取与HHO-KELM的轴承故障诊断方法。该方... 针对3层小波包分解(Wavelet Packet Decomposition,WPD)忽略了1和2层分解信号以及核极限学习机(Kernel Extreme Learning Machine,KELM)参数选择困难的问题,提出一种基于小波包散布熵-mRMR特征选取与HHO-KELM的轴承故障诊断方法。该方法首先对小波包分解中1-3层的14个小波包散布熵(Dispersion Entropy,DE)应用最大相关最小冗余算法(max-relevance and min-redundancy,mRMR)进行特征排序,确定最佳向量维度;然后应用哈里斯鹰优化算法(Harris Hawks Optimization,HHO)实现对KELM参数的优化;最后将最佳维度的小波包散布熵输入到经HHO优化的KELM中进行故障识别。实验结果表明,将mRMR特征选取功能和HHO-KELM聚类功能进行有效结合,可实现故障诊断过程中对分解信号的充分利用,与将只用到第3层分解信号的小波包散布熵输入到KELM的故障分类方法相比,识别准确率提高11.38%。 展开更多
关键词 故障诊断 滚动轴承 小波包散布熵 最大相关最小冗余 特征选取 核极限学习机
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部