The ozone(O_(3))pollution in China drew lots of attention in recent years,and the Sichuan Basin(SCB)was one of the regions confronting worsening O_(3)pollution problem.Many previous studies have shown that regional tr...The ozone(O_(3))pollution in China drew lots of attention in recent years,and the Sichuan Basin(SCB)was one of the regions confronting worsening O_(3)pollution problem.Many previous studies have shown that regional transport is an important contributor to O_(3)pollution.However,very few features of the O_(3)profile during transport have been reported,especially in the border regions between different administrative divisions.In this study,we conducted tethered balloon soundings in SCB during the summer of 2020 and captured a nocturnal O_(3)transport event during the campaign.Vertically,the O_(3)transport occurred in the bottom of the residual layer,between 200 and 500 m above ground level.Horizontally,the transport pathway was directed from southeast to northwest based on the analysis of the wind field and air mass trajectories.The effect of transport in the residual layer on the surface O_(3)concentration was related to the spatial distribution of O_(3).For cities with high O_(3)concentrations in the upwind region,the transport process would bring clean air masses and abate pollution.For downwind lightly polluted cities,the transport process would slow down the decreasing or even increase the surface O_(3)concentration during the night.We provided observational facts on the profile features of a transboundary O_(3)transport event between two provincial administrative divisions,which implicated the importance of joint prevention and control measures.However,the sounding parameters were limited and the quantitative analysis was preliminary,more integrated,and thorough studies of this topic were called for in the future.展开更多
Based on the Stratospheric Aerosol and Gas Experiment (SAGE) II and the Halogen Occultation Ex-periment (HALOE) ozone profiles and the Total Ozone Mapping Spectrometer (TOMS) total ozone data sets,the characteristics ...Based on the Stratospheric Aerosol and Gas Experiment (SAGE) II and the Halogen Occultation Ex-periment (HALOE) ozone profiles and the Total Ozone Mapping Spectrometer (TOMS) total ozone data sets,the characteristics and variations of the vertical distribution of stratospheric ozone covering the latitude bands of 50oN±5oN,40oN±5oN,30oN±5oN,and 20oN±5oN and the longitude range of 75-135oE are investigated.The results indicate that the ozone distribution pattern over China not only has general behaviors,but also has particular char-acteristics.In view of the situation that ozone distribu-tions have substantial deviation from zonal symmetry in northern China,the differences of the vertical ozone dis-tribution between the east and the west part of northern China are studied.The results indicate that during winter,spring,and autumn,in the latitude bands of 50oN±5oN,40oN±5oN,ozone concentrations in the eastern part (105 -135oE) are obviously higher than those of the west (75-105oE) at the altitudes of ozone density maximum and below;during summer,in the latitude band of 50oN±5oN,the east-west ozone profile difference is small,but in the latitude band of 40oN±5oN,the east-west total ozone difference becomes as large as 14.0 DU,and the east-west ozone profile difference mainly exists in the lowermost stratosphere and troposphere.展开更多
Ozone plays a significant part in regulating climate change and the chemical characteristics of the atmosphere. Changes in atmospheric ozone can be studied in more detail using ground-based and satellite-based instrum...Ozone plays a significant part in regulating climate change and the chemical characteristics of the atmosphere. Changes in atmospheric ozone can be studied in more detail using ground-based and satellite-based instruments. Studies on the long-term global changes in total column ozone have begun more than three-decade ago using satellite data. The main objective of this work is to analyze the Total Column Ozone (TCO) variations, and tropo-spheric ozone variations over different twenty locations in the Indian sub-continent by using Total Ozone Mapping Spectrometer (TOMS) and AURA OMI/MLS data. The long-term analysis of total column ozone is divided into two phases (1979-1994 and 2005-2018), and tropospheric ozone for one phase (2005-2018) in order to detect changes in the ozone trend pattern. The results of linear regression analysis show a declining trend of total column ozone, and an increasing trend of tropospheric ozone over the selected locations. The impact of wind pattern on the variation of ozone has been analyzed by using NCEP reanalysis data, and found that wind patterns played a prominent role in spatial and temporal changes in total and tropospheric ozone distribution over the subcontinent. Latitudinal variation of total column ozone from Nagarcoil to Anantanag has also been studied for the years 1979, 1994, 2005, and 2018, which indicates an increase in ozone concentration with latitude.展开更多
The ozone profiles from August 1991 to December 1993 in Qinghai Gonghe Station (the altitude:3000 m,latitude: 36°16.45’N, longitude: 100°37.11’E) have been got through the measurement with a Brewer Ozone s...The ozone profiles from August 1991 to December 1993 in Qinghai Gonghe Station (the altitude:3000 m,latitude: 36°16.45’N, longitude: 100°37.11’E) have been got through the measurement with a Brewer Ozone spectrophotometer and Umkehr retrieval program of AES. The method we used is the short Umkehr method展开更多
基金supported by the National Key R&D Program of China(Nos.2018YFC0214002 and 2018YFC0214001)the Key S&T Program of Sichuan Province(No.2018SZDZX0023)+1 种基金the National Natural Science Foundation of China(No.22076129)the Fundamental Research Funds for the Central Universities(Nos.YJ201871 and YJ201891)。
文摘The ozone(O_(3))pollution in China drew lots of attention in recent years,and the Sichuan Basin(SCB)was one of the regions confronting worsening O_(3)pollution problem.Many previous studies have shown that regional transport is an important contributor to O_(3)pollution.However,very few features of the O_(3)profile during transport have been reported,especially in the border regions between different administrative divisions.In this study,we conducted tethered balloon soundings in SCB during the summer of 2020 and captured a nocturnal O_(3)transport event during the campaign.Vertically,the O_(3)transport occurred in the bottom of the residual layer,between 200 and 500 m above ground level.Horizontally,the transport pathway was directed from southeast to northwest based on the analysis of the wind field and air mass trajectories.The effect of transport in the residual layer on the surface O_(3)concentration was related to the spatial distribution of O_(3).For cities with high O_(3)concentrations in the upwind region,the transport process would bring clean air masses and abate pollution.For downwind lightly polluted cities,the transport process would slow down the decreasing or even increase the surface O_(3)concentration during the night.We provided observational facts on the profile features of a transboundary O_(3)transport event between two provincial administrative divisions,which implicated the importance of joint prevention and control measures.However,the sounding parameters were limited and the quantitative analysis was preliminary,more integrated,and thorough studies of this topic were called for in the future.
基金supported by the National Basic Research Program of China (Grant No.2006CB403702)the National Natural Science Foundation of China (Grant No. 40475014)
文摘Based on the Stratospheric Aerosol and Gas Experiment (SAGE) II and the Halogen Occultation Ex-periment (HALOE) ozone profiles and the Total Ozone Mapping Spectrometer (TOMS) total ozone data sets,the characteristics and variations of the vertical distribution of stratospheric ozone covering the latitude bands of 50oN±5oN,40oN±5oN,30oN±5oN,and 20oN±5oN and the longitude range of 75-135oE are investigated.The results indicate that the ozone distribution pattern over China not only has general behaviors,but also has particular char-acteristics.In view of the situation that ozone distribu-tions have substantial deviation from zonal symmetry in northern China,the differences of the vertical ozone dis-tribution between the east and the west part of northern China are studied.The results indicate that during winter,spring,and autumn,in the latitude bands of 50oN±5oN,40oN±5oN,ozone concentrations in the eastern part (105 -135oE) are obviously higher than those of the west (75-105oE) at the altitudes of ozone density maximum and below;during summer,in the latitude band of 50oN±5oN,the east-west ozone profile difference is small,but in the latitude band of 40oN±5oN,the east-west total ozone difference becomes as large as 14.0 DU,and the east-west ozone profile difference mainly exists in the lowermost stratosphere and troposphere.
文摘Ozone plays a significant part in regulating climate change and the chemical characteristics of the atmosphere. Changes in atmospheric ozone can be studied in more detail using ground-based and satellite-based instruments. Studies on the long-term global changes in total column ozone have begun more than three-decade ago using satellite data. The main objective of this work is to analyze the Total Column Ozone (TCO) variations, and tropo-spheric ozone variations over different twenty locations in the Indian sub-continent by using Total Ozone Mapping Spectrometer (TOMS) and AURA OMI/MLS data. The long-term analysis of total column ozone is divided into two phases (1979-1994 and 2005-2018), and tropospheric ozone for one phase (2005-2018) in order to detect changes in the ozone trend pattern. The results of linear regression analysis show a declining trend of total column ozone, and an increasing trend of tropospheric ozone over the selected locations. The impact of wind pattern on the variation of ozone has been analyzed by using NCEP reanalysis data, and found that wind patterns played a prominent role in spatial and temporal changes in total and tropospheric ozone distribution over the subcontinent. Latitudinal variation of total column ozone from Nagarcoil to Anantanag has also been studied for the years 1979, 1994, 2005, and 2018, which indicates an increase in ozone concentration with latitude.
基金Project supported by the Nationd Natural Science Foundation of China.
文摘The ozone profiles from August 1991 to December 1993 in Qinghai Gonghe Station (the altitude:3000 m,latitude: 36°16.45’N, longitude: 100°37.11’E) have been got through the measurement with a Brewer Ozone spectrophotometer and Umkehr retrieval program of AES. The method we used is the short Umkehr method