利用稻/麦O3-FACE(Ozone-free air controlled enrichment)平台,以武运粳21和两优培九两个耐性不同的水稻品种为材料,模拟研究了近地层大气臭氧浓度升高情形下对水稻叶片气体交换和荧光参数的影响。结果表明:高臭氧浓度降低了两个品种...利用稻/麦O3-FACE(Ozone-free air controlled enrichment)平台,以武运粳21和两优培九两个耐性不同的水稻品种为材料,模拟研究了近地层大气臭氧浓度升高情形下对水稻叶片气体交换和荧光参数的影响。结果表明:高臭氧浓度降低了两个品种水稻叶片的净光合速率、气孔导度以及蒸腾速率,处理76天后,武运粳21的降幅分别为:21.7%,26.64%和24.74%,两优培九的降幅分别为:25.53%,30.31%和25.48%,而对两个品种胞间CO2浓度的影响不显著;水稻叶片荧光动力学参数F0(暗下初始荧光)、ETR(表观电子传递速率)和ФPSⅡ(PSⅡ实际光化学量子产量)呈下降趋势,NPQ(非光化学猝灭系数)逐渐上升,处理76天后武运粳21和两优培九分别上升了16.37%和11.77%。臭氧的影响有一定的累积效应,随着处理时间的延长,相关指标变化幅度增大。高臭氧浓度下水稻叶片胞间CO2浓度没有显著降低,推断臭氧导致的净光合速率的降低是由非气孔限制因素引起。结果表明,两优培九比武运粳21对臭氧响应敏感。展开更多
The sensitivity of Chinese soybean cultivars to ambient ozone(O3) in the field is unknown,although soybean is a major staple food in China. Using ethylenediurea(EDU) as an O3 protectant, we tested the gas exchange...The sensitivity of Chinese soybean cultivars to ambient ozone(O3) in the field is unknown,although soybean is a major staple food in China. Using ethylenediurea(EDU) as an O3 protectant, we tested the gas exchange, pigments, antioxidants and biomass of 19 cultivars exposed to 28 ppm·hr AOT40(accumulated O3 over an hourly concentration threshold of40 ppb) over the growing season at a field site in China. By comparing the average biomass with and without EDU, we estimated the cultivar-specific sensitivity to O3 and ranked the cultivars from very tolerant(〈 10% change) to highly sensitive(〉 45% change), which helps in choosing the best-suited cultivars for local cultivation. Higher lipid peroxidation and activity of the ascorbate peroxidase enzyme were major responses to O3 damage, which eventually translated into lower biomass production. The constitutional level of total ascorbate in the leaves was the most important parameter explaining O3 sensitivity among these cultivars. Surprisingly, the role of stomatal conductance was insignificant. These results will guide future breeding efforts towards more O3-tolerant cultivars in China, while strategies for implementing control measures of regional O3 pollution are being implemented. Overall, these results suggest that present ambient O3 pollution is a serious concern for soybean in China, which highlights the urgent need for policy-making actions to protect this critical staple food.展开更多
The meta-analysis method was applied to quantitatively investigate effects of the elevated ozone concentration ([O3]) on chlorophyll concentration, gas exchange and yield components of wheat. There were 39 effective r...The meta-analysis method was applied to quantitatively investigate effects of the elevated ozone concentration ([O3]) on chlorophyll concentration, gas exchange and yield components of wheat. There were 39 effective references through Web of Science (ISI, USA) and Chinese journal full-text database (CNKI, China). The results of meta-analysis indicated that elevated [O3] decreased grain yield, grain weight, grain number per ear, ear number per plant and harvest index by 26%, 18%, 11%, 5% and 11%, respectively, relative to ambient air. The decrease in leaf physiological characters was much greater than that in yield when wheat was expose to elevated [O3], while light-saturated photosynthetic rate (Asat), stomatal conductance (Gs) and chlorophyll content (Chl) decreased by 40%, 31%, and 46%, respectively. The responses to elevated [O3] between spring wheat and winter wheat were similar. Most of the variables showed a linear decrease trend with an increase of [O3]. The most significant decrease for Asat, Gs and Chl was found in grain filling stage. Elevated [CO2] could significantly ameliorated or offset the detrimental effects caused by elevated [O3].展开更多
文摘利用稻/麦O3-FACE(Ozone-free air controlled enrichment)平台,以武运粳21和两优培九两个耐性不同的水稻品种为材料,模拟研究了近地层大气臭氧浓度升高情形下对水稻叶片气体交换和荧光参数的影响。结果表明:高臭氧浓度降低了两个品种水稻叶片的净光合速率、气孔导度以及蒸腾速率,处理76天后,武运粳21的降幅分别为:21.7%,26.64%和24.74%,两优培九的降幅分别为:25.53%,30.31%和25.48%,而对两个品种胞间CO2浓度的影响不显著;水稻叶片荧光动力学参数F0(暗下初始荧光)、ETR(表观电子传递速率)和ФPSⅡ(PSⅡ实际光化学量子产量)呈下降趋势,NPQ(非光化学猝灭系数)逐渐上升,处理76天后武运粳21和两优培九分别上升了16.37%和11.77%。臭氧的影响有一定的累积效应,随着处理时间的延长,相关指标变化幅度增大。高臭氧浓度下水稻叶片胞间CO2浓度没有显著降低,推断臭氧导致的净光合速率的降低是由非气孔限制因素引起。结果表明,两优培九比武运粳21对臭氧响应敏感。
基金supported by State Key Laboratory of Soil and Sustainable Agriculture(No.Y20160030)the Hundred Talents Program,Chinese Academy of Sciences,Chinese Academy of Sciences President's International Fellowship Initiative(PIFI)for Senior Scientists(Grant Number 2016VBA057)CNR-CAS bilateral agreement 2017–2019(Ozone impacts on plant ecosystems in China and Italy)
文摘The sensitivity of Chinese soybean cultivars to ambient ozone(O3) in the field is unknown,although soybean is a major staple food in China. Using ethylenediurea(EDU) as an O3 protectant, we tested the gas exchange, pigments, antioxidants and biomass of 19 cultivars exposed to 28 ppm·hr AOT40(accumulated O3 over an hourly concentration threshold of40 ppb) over the growing season at a field site in China. By comparing the average biomass with and without EDU, we estimated the cultivar-specific sensitivity to O3 and ranked the cultivars from very tolerant(〈 10% change) to highly sensitive(〉 45% change), which helps in choosing the best-suited cultivars for local cultivation. Higher lipid peroxidation and activity of the ascorbate peroxidase enzyme were major responses to O3 damage, which eventually translated into lower biomass production. The constitutional level of total ascorbate in the leaves was the most important parameter explaining O3 sensitivity among these cultivars. Surprisingly, the role of stomatal conductance was insignificant. These results will guide future breeding efforts towards more O3-tolerant cultivars in China, while strategies for implementing control measures of regional O3 pollution are being implemented. Overall, these results suggest that present ambient O3 pollution is a serious concern for soybean in China, which highlights the urgent need for policy-making actions to protect this critical staple food.
基金Supported by National Natural Science Foundation of China (Grant No. 30670387)Eco-Frontier Fellowship of the Ministry of Environment, Japan (Grant No. 07-C062-03)Ministry of Science and Technology of People’s Republic China with 973 Project (Grant No. 2002CB410803)
文摘The meta-analysis method was applied to quantitatively investigate effects of the elevated ozone concentration ([O3]) on chlorophyll concentration, gas exchange and yield components of wheat. There were 39 effective references through Web of Science (ISI, USA) and Chinese journal full-text database (CNKI, China). The results of meta-analysis indicated that elevated [O3] decreased grain yield, grain weight, grain number per ear, ear number per plant and harvest index by 26%, 18%, 11%, 5% and 11%, respectively, relative to ambient air. The decrease in leaf physiological characters was much greater than that in yield when wheat was expose to elevated [O3], while light-saturated photosynthetic rate (Asat), stomatal conductance (Gs) and chlorophyll content (Chl) decreased by 40%, 31%, and 46%, respectively. The responses to elevated [O3] between spring wheat and winter wheat were similar. Most of the variables showed a linear decrease trend with an increase of [O3]. The most significant decrease for Asat, Gs and Chl was found in grain filling stage. Elevated [CO2] could significantly ameliorated or offset the detrimental effects caused by elevated [O3].