This paper reviews the status of the gas-to-liquids (GTL) industry-including current commercial plants, announced projects and the technologies that are likely to be implemented in these future projects. Today, only 3...This paper reviews the status of the gas-to-liquids (GTL) industry-including current commercial plants, announced projects and the technologies that are likely to be implemented in these future projects. Today, only 35,000 B/D of GTL products (0.1% of market) are manufactured from commercial gas-based plants. Advances in technology have lowered the cost of plants to the point where GTL plants can be profitable at crude oil prices of $16/B. The advanced stage of development of several proposed GTL projects and attractive integrated economics, for both the gas field and plant, show that GTL can be a significant alternative for monetizing natural gas in the 21st century. GTL technologies includes more than Fischer-Tropsch technology and extends to other liquid fuels, especially in the oxygenate family (methanol, dimethyl ether, etc.).展开更多
The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic ...The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.展开更多
Methane chemistry is one of the“Holy Grails of catalysis”.It is highly desirable but challenge to transform methane into value-added chemicals,because of its high C-H bonding energy(435 kJ/mol),lack ofπbonding or u...Methane chemistry is one of the“Holy Grails of catalysis”.It is highly desirable but challenge to transform methane into value-added chemicals,because of its high C-H bonding energy(435 kJ/mol),lack ofπbonding or unpaired electrons.Currently,commercial methane conversion is usually carried out in harsh conditions with enormous energy input.Photocatalytic partial oxidation of methane to liquid oxygenates(PPOMO)is a future-oriented technology towards realizing high efficiency and high selectivity under mild conditions.The selection of oxidant is crucial to the PPOMO performance.Hence,attentions are paid to the research progress of PPOMO with various oxidants(O_(2),H_(2)O,H_(2)O_(2)and other oxidants).Moreover,the activation of the selected oxidants is also highly emphasized.Meanwhile,we summarized the methane activation mechanisms focusing on the C-H bond that was broken mainly by·OH radical,O-specie or photogenerated hole(h+).Finally,the challenges and prospects in this subject are briefly discussed.展开更多
The selective oxidation of methane under mild conditions remains the“Holy Grail of Catalysis”.The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers.Copper ...The selective oxidation of methane under mild conditions remains the“Holy Grail of Catalysis”.The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers.Copper nanoparticles were loaded onto TiO_(2) nanofibers using the photo-deposition method.The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions.Compared with previously reported catalysts,it delivers a superior performance of up to 2510.7 mmol·g_(Cu)^(-1)·h^(-1) productivity with a selectivity of around 100%at 80℃for 5 min.Microstructure characterizations and density functional theory(DFT)calculations indicate that TiO_(2) in the mixed phase of anatase and rutile significantly increases the Cu^(+)/CuO ratio of the supported Cu species,and this ratio is linearly related to the formation rate of oxygen-containing species.The CuI site promotes the generation of active O species from H_(2)O_(2) dissociation on Cu_(2)O(111).These active O species reduce the energy barrier for breaking the C-H bond of CH_(4),thus boosting the catalytic activity.The methane conversion mechanism was proposed as a methyl radical pathway to form CH_(3)OH and CH_(3)OOH,and then the generated CH_(3)OH is further oxidized to HOCH_(2)OOH.展开更多
采用热重分析、固定床实验、红外分析(FT-IR)研究了生活垃圾热解行为及产物中含氧物质的分布规律。用热重分析确定了生活垃圾主要失重区间(190~450℃),并计算此温度区间热解活化能为42.76 k J/mol。在热解终温为450~650℃条件下进...采用热重分析、固定床实验、红外分析(FT-IR)研究了生活垃圾热解行为及产物中含氧物质的分布规律。用热重分析确定了生活垃圾主要失重区间(190~450℃),并计算此温度区间热解活化能为42.76 k J/mol。在热解终温为450~650℃条件下进行生活垃圾固定床热解实验,结果表明:随热解终温的增加,固体产物中氧分布率逐渐减小(39.2%~29.3%);热解气中氧分布率逐渐增加(22.1%~30.9%);热解液中氧分布率在40%左右。生活垃圾热解气中含氧成分主要是CO和CO2,在温度为450~650℃时,CO含量明显高于CO2,而CO2的释放速率则大于CO;固体产物中含氧官能团主要有—OH和C—O,其中峰面积比例顺序为C—O〉—OH;热解液中含氧官能团主要有—OH、C=O和C—O,其峰面积的比例顺序为—OH〉C—O〉C=O。展开更多
采用萃取法对费托合成油进行预处理,得到含氧化合物富集的萃取相,采用GC-MS对含氧化合物进行定性分析,采用GC-FID对其中的低碳正构醇进行定量分析。分析得到了86个含氧化合物的定性结果以及低碳正构醇的定量结果。结果表明,低碳正构醇在...采用萃取法对费托合成油进行预处理,得到含氧化合物富集的萃取相,采用GC-MS对含氧化合物进行定性分析,采用GC-FID对其中的低碳正构醇进行定量分析。分析得到了86个含氧化合物的定性结果以及低碳正构醇的定量结果。结果表明,低碳正构醇在0.10~15.00 m L/L范围内具有良好的线性关系,相对标准偏差小于4%,方法回收率在80%~92%。分析结果为费托合成催化剂、动力学研究提供数据支持。展开更多
文摘This paper reviews the status of the gas-to-liquids (GTL) industry-including current commercial plants, announced projects and the technologies that are likely to be implemented in these future projects. Today, only 35,000 B/D of GTL products (0.1% of market) are manufactured from commercial gas-based plants. Advances in technology have lowered the cost of plants to the point where GTL plants can be profitable at crude oil prices of $16/B. The advanced stage of development of several proposed GTL projects and attractive integrated economics, for both the gas field and plant, show that GTL can be a significant alternative for monetizing natural gas in the 21st century. GTL technologies includes more than Fischer-Tropsch technology and extends to other liquid fuels, especially in the oxygenate family (methanol, dimethyl ether, etc.).
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(NRF,2021R1C1C1013953,2022K1A4A7A04094394,2022K1A4A7A04095890)。
文摘The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.
基金the National Key R&D Program of China(No.2021YFA1500800)National Natural Science Foundation of China(No.22072106).
文摘Methane chemistry is one of the“Holy Grails of catalysis”.It is highly desirable but challenge to transform methane into value-added chemicals,because of its high C-H bonding energy(435 kJ/mol),lack ofπbonding or unpaired electrons.Currently,commercial methane conversion is usually carried out in harsh conditions with enormous energy input.Photocatalytic partial oxidation of methane to liquid oxygenates(PPOMO)is a future-oriented technology towards realizing high efficiency and high selectivity under mild conditions.The selection of oxidant is crucial to the PPOMO performance.Hence,attentions are paid to the research progress of PPOMO with various oxidants(O_(2),H_(2)O,H_(2)O_(2)and other oxidants).Moreover,the activation of the selected oxidants is also highly emphasized.Meanwhile,we summarized the methane activation mechanisms focusing on the C-H bond that was broken mainly by·OH radical,O-specie or photogenerated hole(h+).Finally,the challenges and prospects in this subject are briefly discussed.
基金supported by the National Natural Science Foundation of China(Nos.92145301,91845201,22002094,22102106,22309061)the Natural Science Foundation of Jilin Province(No.YDZJ202201ZYTS360).
文摘The selective oxidation of methane under mild conditions remains the“Holy Grail of Catalysis”.The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers.Copper nanoparticles were loaded onto TiO_(2) nanofibers using the photo-deposition method.The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions.Compared with previously reported catalysts,it delivers a superior performance of up to 2510.7 mmol·g_(Cu)^(-1)·h^(-1) productivity with a selectivity of around 100%at 80℃for 5 min.Microstructure characterizations and density functional theory(DFT)calculations indicate that TiO_(2) in the mixed phase of anatase and rutile significantly increases the Cu^(+)/CuO ratio of the supported Cu species,and this ratio is linearly related to the formation rate of oxygen-containing species.The CuI site promotes the generation of active O species from H_(2)O_(2) dissociation on Cu_(2)O(111).These active O species reduce the energy barrier for breaking the C-H bond of CH_(4),thus boosting the catalytic activity.The methane conversion mechanism was proposed as a methyl radical pathway to form CH_(3)OH and CH_(3)OOH,and then the generated CH_(3)OH is further oxidized to HOCH_(2)OOH.
文摘采用热重分析、固定床实验、红外分析(FT-IR)研究了生活垃圾热解行为及产物中含氧物质的分布规律。用热重分析确定了生活垃圾主要失重区间(190~450℃),并计算此温度区间热解活化能为42.76 k J/mol。在热解终温为450~650℃条件下进行生活垃圾固定床热解实验,结果表明:随热解终温的增加,固体产物中氧分布率逐渐减小(39.2%~29.3%);热解气中氧分布率逐渐增加(22.1%~30.9%);热解液中氧分布率在40%左右。生活垃圾热解气中含氧成分主要是CO和CO2,在温度为450~650℃时,CO含量明显高于CO2,而CO2的释放速率则大于CO;固体产物中含氧官能团主要有—OH和C—O,其中峰面积比例顺序为C—O〉—OH;热解液中含氧官能团主要有—OH、C=O和C—O,其峰面积的比例顺序为—OH〉C—O〉C=O。
文摘采用萃取法对费托合成油进行预处理,得到含氧化合物富集的萃取相,采用GC-MS对含氧化合物进行定性分析,采用GC-FID对其中的低碳正构醇进行定量分析。分析得到了86个含氧化合物的定性结果以及低碳正构醇的定量结果。结果表明,低碳正构醇在0.10~15.00 m L/L范围内具有良好的线性关系,相对标准偏差小于4%,方法回收率在80%~92%。分析结果为费托合成催化剂、动力学研究提供数据支持。