The successful application of co-immobilized aerobic-anaerobic biomass under limited aeration in wastewater treatment systems would eliminate the problems associated with the intermediates mono-chlorophenol(MCP) and...The successful application of co-immobilized aerobic-anaerobic biomass under limited aeration in wastewater treatment systems would eliminate the problems associated with the intermediates mono-chlorophenol(MCP) and di-chlorophenol(DCP) accumulations. With low initial pentachlorophenol(PCP) concentration, all PCP could be completely removed under oxygen-limited strict anaerobic conditions, and the removal efficiencies with different initial headspace oxygen percentage(IHOP) were not obviously different from each other. While at high initial PCP concentration, under strictly anaerobic conditions PCP and their intermediates were clearly higher than that under other conditions, and produced obvious accumulation, the highest PCP reduction was achieved by the system receiving 30 IHOP, oxygen-limited system also exhibited lower residual TOC concentration and lower concentration of metabolic intermediates MCP and DCP. These results suggested that under strictly anaerobic condition the reductive dechlorination of low chlorinated compounds became rate limiting in the reductive dechlorination pathway, less chlorinated compounds be more amenable to aerobic degradation, and the aerobes of outer layers could function under limited oxygen. The co-immobilized aerobic-anaerobic biomass for methanogenesis under limited-aeration for chlorophenol degradation might be an attractive and efficient alternative for the sequential anaerobic/aerobic system to achieve mineralization of a broad range of recalcitrance highly chlorinated organics and low final TOC concentrations.展开更多
No consistent variation was found in soil respiration Q10 under various O2 conditions.Substrate C quality had a strong effect on Q10 in oxic soils.N limitation had a large impact on Q10 in soils under O2 limitation.Cu...No consistent variation was found in soil respiration Q10 under various O2 conditions.Substrate C quality had a strong effect on Q10 in oxic soils.N limitation had a large impact on Q10 in soils under O2 limitation.Current studies on the temperature sensitivity(Q10)of soil organic matter(SOM)decomposition mainly focus on aerobic conditions.However,varia-tions and determinants of Q10 in oxygen(O2)-deprived soils remain unclear.Here we incubated three grassland soils under oxic,suboxic,and anoxic conditions subjected to varying temperatures to compare variations in Q10 in relation to changing substrates.No consistent variation was found in Q10 under various O2 conditions.Further analysis of edaphic properties demon-strated that substrate carbon quality showed a strong influence on Q10 in oxic soils,whereas nitrogen limitation played a more important role in suboxic and anoxic soils.These results suggest that substrate carbon quality and nitrogen limitation may play roles of varying importance in determining the temperature sensitivity of SOM decomposition under various O2 conditions.展开更多
基金The Natural Science Foundation of Guangdong(No. 31430) ,the State Key Laboratory of Pulp and Paper Engineering, South China University ofTechnology(No.200335) and Laboratory of Cellulose and Lignocellulosics Chemistry,Chinese Academy of Sciences
文摘The successful application of co-immobilized aerobic-anaerobic biomass under limited aeration in wastewater treatment systems would eliminate the problems associated with the intermediates mono-chlorophenol(MCP) and di-chlorophenol(DCP) accumulations. With low initial pentachlorophenol(PCP) concentration, all PCP could be completely removed under oxygen-limited strict anaerobic conditions, and the removal efficiencies with different initial headspace oxygen percentage(IHOP) were not obviously different from each other. While at high initial PCP concentration, under strictly anaerobic conditions PCP and their intermediates were clearly higher than that under other conditions, and produced obvious accumulation, the highest PCP reduction was achieved by the system receiving 30 IHOP, oxygen-limited system also exhibited lower residual TOC concentration and lower concentration of metabolic intermediates MCP and DCP. These results suggested that under strictly anaerobic condition the reductive dechlorination of low chlorinated compounds became rate limiting in the reductive dechlorination pathway, less chlorinated compounds be more amenable to aerobic degradation, and the aerobes of outer layers could function under limited oxygen. The co-immobilized aerobic-anaerobic biomass for methanogenesis under limited-aeration for chlorophenol degradation might be an attractive and efficient alternative for the sequential anaerobic/aerobic system to achieve mineralization of a broad range of recalcitrance highly chlorinated organics and low final TOC concentrations.
基金supported by the National Key Research and Development Program of China(No.2019YFA0607303)the National Natural Science Foundation of China(No.42107315).
文摘No consistent variation was found in soil respiration Q10 under various O2 conditions.Substrate C quality had a strong effect on Q10 in oxic soils.N limitation had a large impact on Q10 in soils under O2 limitation.Current studies on the temperature sensitivity(Q10)of soil organic matter(SOM)decomposition mainly focus on aerobic conditions.However,varia-tions and determinants of Q10 in oxygen(O2)-deprived soils remain unclear.Here we incubated three grassland soils under oxic,suboxic,and anoxic conditions subjected to varying temperatures to compare variations in Q10 in relation to changing substrates.No consistent variation was found in Q10 under various O2 conditions.Further analysis of edaphic properties demon-strated that substrate carbon quality showed a strong influence on Q10 in oxic soils,whereas nitrogen limitation played a more important role in suboxic and anoxic soils.These results suggest that substrate carbon quality and nitrogen limitation may play roles of varying importance in determining the temperature sensitivity of SOM decomposition under various O2 conditions.