Reduction of CO2to solar fuels by artificial photosynthesis technology has attracted considerable attention. However, insufficient separation of charge carriers and weak CO2adsorption hamper the photocatalytic CO2 red...Reduction of CO2to solar fuels by artificial photosynthesis technology has attracted considerable attention. However, insufficient separation of charge carriers and weak CO2adsorption hamper the photocatalytic CO2 reduction activity. Herein, we tackle these challenges by introducing oxygen vacancies (OVs) on the two-dimensional Bi4Ti3O12ultrathin nanosheets via a combined hydrothermal and postreduction process. Selective photodeposition experiment of Pt over Bi4Ti3O12discloses that the ultrathin structure shortens the migration distance of photo-induced electrons from bulk to the surface, benefiting the fast participation in the CO2reduction reaction. The introduction of OVs on ultrathin Bi4Ti3O12 nanosheets leads to enormous amelioration on surface state and electronic structure, thereby resulting in enhanced CO2adsorption, photoabsorption and charge separation efficiency. The photocatalytic experiments uncover that ultrathin Bi4Ti3O12nanosheets with OVs reveal a largely enhanced CO2photoreduction activity for producing CO with a rate of 11.7 lmol g-1h-1in the gas–solid system, 3.2 times higher than that of bulk Bi4Ti3O12. This work not only yields efficient ultrathin photocatalysts with OVs, but also furthers our understanding on enhancing CO2reduction via cooperative tactics.展开更多
Photocatalytic O_(2)activation to generate reactive oxygen species is crucially important for purifying organic pollutants,yet remains a challenge due to poor adsorption of O_(2)and low efficiency of electron transfer...Photocatalytic O_(2)activation to generate reactive oxygen species is crucially important for purifying organic pollutants,yet remains a challenge due to poor adsorption of O_(2)and low efficiency of electron transfer.Herein,we demonstrate that ultrafine MoO_(x)clusters anchored on graphitic carbon nitride(g-C_(3)N_(4))with dual nitrogen/oxygen defects promote the photocatalytic activation of O_(2)to generate·O_(2)−for the degradation of tetracycline hydrochloride(TCH).A range of characterization techniques and density functional theory(DFT)calculations reveal that the introduction of the nitrogen/oxygen dual defects and MoO_(x)clusters enhances the O_(2)adsorption energy from−2.77 to−2.94 eV.We find that MoO_(x)clusters with oxygen vacancies(Ov)and surface Ov-mediated Moδ+(3≥δ≥2)possess unpaired localized electrons,which act as electron capture centers to transfer electrons to the MoO_(x)clusters.These electrons can then transfer to the surface adsorbed O_(2),thus promoting the photocatalytic conversion of O_(2)to·O_(2)−and,simultaneously,realizing the efficient separation of photogenerated electron–hole pairs.Our fully-optimized MoO_(x)/g-C_(3)N_(4)catalyst with dual nitrogen/oxygen defects manifests outstanding photoactivities,achieving 79%degradation efficiency toward TCH within 120 min under visible light irradiation,representing nearly 7 times higher activity than pristine g-C_(3)N_(4).Finally,based on the results of liquid chromatograph mass spectrometry and DFT calculations,the possible photocatalytic degradation pathways of TCH were proposed.展开更多
To further understand the effect of structural defects on the electrochemical and photocatalytic properties of TiO2, two synthetic approaches based on hydrothermal synthesis and post-synthetic chemical reduction to ac...To further understand the effect of structural defects on the electrochemical and photocatalytic properties of TiO2, two synthetic approaches based on hydrothermal synthesis and post-synthetic chemical reduction to achieve oxygen defect- implantation were developed herein. These approaches led to the formation of TiO2 nanorods with uniformly distributed defects in either the bulk or on the surface, or the combination of both, in the formed TiO2 nanorods (NRs). Both approaches utilize unique TiN nanoparticles as the reaction precursor. Electron microscopy and Brunauer-Emmett-Teller (BET) analyses indicate that all the studied samples exhibit similar morphology and similar specific surface areas. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) data confirm the existence of oxygen defects (Vo). The photocatalytic properties of TiO2 with different types of implanted Vo were evaluated based on photocatalytic H2 production. By optimizing the concentration of Vo among the TiO2 NRs subjected to different treatments, significantly higher photocatalytic activities than that of the stoichiometric TiO2 NRs was achieved. The incident photon-to-current efficiency (IPCE) data indicate that the enhanced photocatalytic activity arises mainly from defect-assisted charge separation, which implies that photo-generated electrons or holes can be captured by Vo and suppress the charge recombination process. The results show that the defective TiO2 obtained by combining the two approaches exhibits the greatest photocatalytic activity enhancement amon~ all the samples.展开更多
A dense Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane tube was prepared by the extruding method. Furthermore, a membrane reactor with this tubular membrane was successfully applied to partial oxidation of methane (POM) reaction,...A dense Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane tube was prepared by the extruding method. Furthermore, a membrane reactor with this tubular membrane was successfully applied to partial oxidation of methane (POM) reaction, in which the separation of oxygen from air and the partial oxidation of methane are integrated in one process. At 875°C, 94% of methane conversion, 98% of CO selectivity, 95% of H2 selectivity, and as high as 8.8 mL/(min·cm2) of oxygen flux were obtained. In POM reaction condition, the membrane tube shows a very good stability.展开更多
The synthesis of oxygen vacancies(OVs)-modified TiO_(2)under mild conditions is attractive.In this work,OVs were easily introduced in TiO_(2)lattice during the hydrothermal doping process of trivalent iron ions.Theore...The synthesis of oxygen vacancies(OVs)-modified TiO_(2)under mild conditions is attractive.In this work,OVs were easily introduced in TiO_(2)lattice during the hydrothermal doping process of trivalent iron ions.Theoretical calculations based on a novel charge-compensation structure model were employed with experimental methods to reveal the intrinsic photocatalytic mechanism of Fe-doped TiO_(2)(Fe-TiO_(2)).The OVs formation energy in Fe-TiO_(2)(1.12 eV)was only 23.6%of that in TiO_(2)(4.74 eV),explaining why Fe^(3+)doping could introduce OVs in the TiO_(2)lattice.The calculation results also indicated that impurity states introduced by Fe^(3+)and OVs enhanced the light absorption activity of TiO_(2).Additionally,charge carrier transport was investigated through the carrier lifetime and relative mass.The carrier lifetime of Fe-TiO_(2)(4.00,4.10,and 3.34 ns for 1at%,2at%,and 3at%doping contents,respectively)was longer than that of undoped TiO_(2)(3.22 ns),indicating that Fe^(3+) and OVs could promote charge carrier separation,which can be attributed to the larger relative effective mass of electrons and holes.Herein,Fe-TiO_(2)has higher photocatalytic indoor NO removal activity compared with other photocatalysts because it has strong light absorption activity and high carrier separation efficiency.展开更多
The effective separation and migration of photogenerated charge carriers in bulk and on the surface of photocatalysts will significantly promote photocatalytic efficiency.However,the synchronous regulation of photocha...The effective separation and migration of photogenerated charge carriers in bulk and on the surface of photocatalysts will significantly promote photocatalytic efficiency.However,the synchronous regulation of photocharges on both counts is challenging.Herein,the simultaneous separation of bulk and surface photocharges is conducted to enhance photocatalytic activity by coupling the surface defects and lattice engineering of bismuth oxybromide.The depth-modulated Bi_(5)O_(7)Br ultrathin nanosheets with an abundance of bismuth in the crystal structure increased the internal electric field,which propelled the separation and migration of photocharges from bulk to the surface.Creation of oxygen vacancies(OVs)on the nanosheet surface forms local electric fields,which can stimulate the migration of charges to active sites on the catalyst surface.Therefore,the OV-assembled Bi_(5)O_(7)Br nanosheets demonstrated enhanced photocatalytic degradation efficiency under simulated solar-light illumination.This study proved the possibility of charge governing via electric field modulation based on an integrated strategy.展开更多
基金This work was jointly supported by the National Natural Science Foundation of China(51972288 and 51672258)the Fundamental Research Funds for the Central Universities(2652018290).
文摘Reduction of CO2to solar fuels by artificial photosynthesis technology has attracted considerable attention. However, insufficient separation of charge carriers and weak CO2adsorption hamper the photocatalytic CO2 reduction activity. Herein, we tackle these challenges by introducing oxygen vacancies (OVs) on the two-dimensional Bi4Ti3O12ultrathin nanosheets via a combined hydrothermal and postreduction process. Selective photodeposition experiment of Pt over Bi4Ti3O12discloses that the ultrathin structure shortens the migration distance of photo-induced electrons from bulk to the surface, benefiting the fast participation in the CO2reduction reaction. The introduction of OVs on ultrathin Bi4Ti3O12 nanosheets leads to enormous amelioration on surface state and electronic structure, thereby resulting in enhanced CO2adsorption, photoabsorption and charge separation efficiency. The photocatalytic experiments uncover that ultrathin Bi4Ti3O12nanosheets with OVs reveal a largely enhanced CO2photoreduction activity for producing CO with a rate of 11.7 lmol g-1h-1in the gas–solid system, 3.2 times higher than that of bulk Bi4Ti3O12. This work not only yields efficient ultrathin photocatalysts with OVs, but also furthers our understanding on enhancing CO2reduction via cooperative tactics.
基金supported by the National Natural Science Foundation of China(No.21972010)the National Key Research and Development Program of China(No.2022YFC2105900).
文摘Photocatalytic O_(2)activation to generate reactive oxygen species is crucially important for purifying organic pollutants,yet remains a challenge due to poor adsorption of O_(2)and low efficiency of electron transfer.Herein,we demonstrate that ultrafine MoO_(x)clusters anchored on graphitic carbon nitride(g-C_(3)N_(4))with dual nitrogen/oxygen defects promote the photocatalytic activation of O_(2)to generate·O_(2)−for the degradation of tetracycline hydrochloride(TCH).A range of characterization techniques and density functional theory(DFT)calculations reveal that the introduction of the nitrogen/oxygen dual defects and MoO_(x)clusters enhances the O_(2)adsorption energy from−2.77 to−2.94 eV.We find that MoO_(x)clusters with oxygen vacancies(Ov)and surface Ov-mediated Moδ+(3≥δ≥2)possess unpaired localized electrons,which act as electron capture centers to transfer electrons to the MoO_(x)clusters.These electrons can then transfer to the surface adsorbed O_(2),thus promoting the photocatalytic conversion of O_(2)to·O_(2)−and,simultaneously,realizing the efficient separation of photogenerated electron–hole pairs.Our fully-optimized MoO_(x)/g-C_(3)N_(4)catalyst with dual nitrogen/oxygen defects manifests outstanding photoactivities,achieving 79%degradation efficiency toward TCH within 120 min under visible light irradiation,representing nearly 7 times higher activity than pristine g-C_(3)N_(4).Finally,based on the results of liquid chromatograph mass spectrometry and DFT calculations,the possible photocatalytic degradation pathways of TCH were proposed.
文摘To further understand the effect of structural defects on the electrochemical and photocatalytic properties of TiO2, two synthetic approaches based on hydrothermal synthesis and post-synthetic chemical reduction to achieve oxygen defect- implantation were developed herein. These approaches led to the formation of TiO2 nanorods with uniformly distributed defects in either the bulk or on the surface, or the combination of both, in the formed TiO2 nanorods (NRs). Both approaches utilize unique TiN nanoparticles as the reaction precursor. Electron microscopy and Brunauer-Emmett-Teller (BET) analyses indicate that all the studied samples exhibit similar morphology and similar specific surface areas. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) data confirm the existence of oxygen defects (Vo). The photocatalytic properties of TiO2 with different types of implanted Vo were evaluated based on photocatalytic H2 production. By optimizing the concentration of Vo among the TiO2 NRs subjected to different treatments, significantly higher photocatalytic activities than that of the stoichiometric TiO2 NRs was achieved. The incident photon-to-current efficiency (IPCE) data indicate that the enhanced photocatalytic activity arises mainly from defect-assisted charge separation, which implies that photo-generated electrons or holes can be captured by Vo and suppress the charge recombination process. The results show that the defective TiO2 obtained by combining the two approaches exhibits the greatest photocatalytic activity enhancement amon~ all the samples.
基金This work was supported by the National High Technology Research and Development Program (Grant No. 715-006-0122)the "973" Project of the Ministry of Science and Technology, China (Grant No. G1999022401).
文摘A dense Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane tube was prepared by the extruding method. Furthermore, a membrane reactor with this tubular membrane was successfully applied to partial oxidation of methane (POM) reaction, in which the separation of oxygen from air and the partial oxidation of methane are integrated in one process. At 875°C, 94% of methane conversion, 98% of CO selectivity, 95% of H2 selectivity, and as high as 8.8 mL/(min·cm2) of oxygen flux were obtained. In POM reaction condition, the membrane tube shows a very good stability.
基金supported by the BJAST High-level Innovation Team Program (No.BGS202001)the Beijing Postdoctoral Research Foundation (No.2022-ZZ-046)+3 种基金the National Natural and Science Foundation of China (No.51972026)the Japan Society for the Promotion of Science (JSPS)Grant-in-Aid for the Scientific Research (KAKENHI,Nos.16H06439 and 20H00297)the Dynamic Alliance for Open Innovations Bridging Human,Environment and Materials,the Cooperative Research Program of“Network Joint Research Center for Materials and Devices.”the scholarship granted to a visiting Ph.D.student of the Inter-University Exchange Project by the China Scholarship Council (CSC,No.201906460113)。
文摘The synthesis of oxygen vacancies(OVs)-modified TiO_(2)under mild conditions is attractive.In this work,OVs were easily introduced in TiO_(2)lattice during the hydrothermal doping process of trivalent iron ions.Theoretical calculations based on a novel charge-compensation structure model were employed with experimental methods to reveal the intrinsic photocatalytic mechanism of Fe-doped TiO_(2)(Fe-TiO_(2)).The OVs formation energy in Fe-TiO_(2)(1.12 eV)was only 23.6%of that in TiO_(2)(4.74 eV),explaining why Fe^(3+)doping could introduce OVs in the TiO_(2)lattice.The calculation results also indicated that impurity states introduced by Fe^(3+)and OVs enhanced the light absorption activity of TiO_(2).Additionally,charge carrier transport was investigated through the carrier lifetime and relative mass.The carrier lifetime of Fe-TiO_(2)(4.00,4.10,and 3.34 ns for 1at%,2at%,and 3at%doping contents,respectively)was longer than that of undoped TiO_(2)(3.22 ns),indicating that Fe^(3+) and OVs could promote charge carrier separation,which can be attributed to the larger relative effective mass of electrons and holes.Herein,Fe-TiO_(2)has higher photocatalytic indoor NO removal activity compared with other photocatalysts because it has strong light absorption activity and high carrier separation efficiency.
基金This work was supported by the National Natural Science Foundation of China(No.52002089)the innovation team of Xiangsi Lake Young Scholars of Guangxi Minzu University(No.2020RSCXSHQN06)the training program for thousands of backbone young teachers in Guangxi universities,and the undergraduate innovation and entrepreneurship project of Guangxi Minzu University(No.202110608002).
文摘The effective separation and migration of photogenerated charge carriers in bulk and on the surface of photocatalysts will significantly promote photocatalytic efficiency.However,the synchronous regulation of photocharges on both counts is challenging.Herein,the simultaneous separation of bulk and surface photocharges is conducted to enhance photocatalytic activity by coupling the surface defects and lattice engineering of bismuth oxybromide.The depth-modulated Bi_(5)O_(7)Br ultrathin nanosheets with an abundance of bismuth in the crystal structure increased the internal electric field,which propelled the separation and migration of photocharges from bulk to the surface.Creation of oxygen vacancies(OVs)on the nanosheet surface forms local electric fields,which can stimulate the migration of charges to active sites on the catalyst surface.Therefore,the OV-assembled Bi_(5)O_(7)Br nanosheets demonstrated enhanced photocatalytic degradation efficiency under simulated solar-light illumination.This study proved the possibility of charge governing via electric field modulation based on an integrated strategy.