Thermal stability of HgCl2 has a pivotal importance for the hydrochlorination reaction as the loss of mercuric compounds is toxic and detrimental to environment.Here we report a low-mercury catalyst which has durabili...Thermal stability of HgCl2 has a pivotal importance for the hydrochlorination reaction as the loss of mercuric compounds is toxic and detrimental to environment.Here we report a low-mercury catalyst which has durability over 10000 h for acetylene hydrochlorination under the industrial condition.The stability of the catalyst is carefully analyzed from a combined experimental and density functional theory study.The analysis shows that the extraordinary stability of mercury catalyst is resulted from the synergy effects between surface oxygen groups and defective edge sites.The binding energy of HgCl2 is increased to be higher than 130 kJ/mol when adsorption is at the edge site with a nearby oxygen group.Therefore,the present study revealed that the thermal stability problem of mercury-based catalyst can be solved by simply adjusting the surface chemistry of activated carbon.Furthermore,the reported catalyst has already been successfully applied in the commercialized production of vinyl chloride.展开更多
PtCo nanoalloys(NAs)deposited on carbon black are emerging as robust electrocatalysts for addressing the sluggish kinetic issue of oxygen reduction reaction(ORR).However,developing a simple and low-cost method to synt...PtCo nanoalloys(NAs)deposited on carbon black are emerging as robust electrocatalysts for addressing the sluggish kinetic issue of oxygen reduction reaction(ORR).However,developing a simple and low-cost method to synthesize PtCo/C with excellent performance is still a great challenge.In this work,a one-pot method was used to successfully obtain the PtCo NAs on commercial carbon supports of acetylene black and Ketjenblack ECP600JD,respectively.Compared with those grown on Ketjenblack ECP600JD,the PtCo NAs grown on acetylene black exhibited higher electrochemical surface area(ECSA)and mass activity(MA),which may be attributed to the different particle sizes of PtCo NAs,distinct hydrophilicity,electroconductivity and charge distribution between the carbon supports and PtCo NAs.Our study provides valuable insights into the optimal design of carbon-supported ORR electrocatalysts with exceptional activity and durability.展开更多
文摘Thermal stability of HgCl2 has a pivotal importance for the hydrochlorination reaction as the loss of mercuric compounds is toxic and detrimental to environment.Here we report a low-mercury catalyst which has durability over 10000 h for acetylene hydrochlorination under the industrial condition.The stability of the catalyst is carefully analyzed from a combined experimental and density functional theory study.The analysis shows that the extraordinary stability of mercury catalyst is resulted from the synergy effects between surface oxygen groups and defective edge sites.The binding energy of HgCl2 is increased to be higher than 130 kJ/mol when adsorption is at the edge site with a nearby oxygen group.Therefore,the present study revealed that the thermal stability problem of mercury-based catalyst can be solved by simply adjusting the surface chemistry of activated carbon.Furthermore,the reported catalyst has already been successfully applied in the commercialized production of vinyl chloride.
基金supported by National Natural Science Foundation of China(No.22102086)the Shandong Provincial Natural Science Fund for Excellent Young Scientists Fund Program(Overseas),China(No.2023HWYQ-059)+5 种基金the Shandong Provincial Natural Science Foundation,China(No.ZR2022MB028)the Major Fundamental Research Project of Shandong Natural Science Fund,China(No.ZR2023ZD54)the Taishan Scholar Program of Shandong Province,China(No.tsqnz20221113)the Fundamental Research Funds for the Central Universities,China(Nos.862201013152,202412008)the Youth Innovation Plan of Shandong Province,China(No.2022KJ054)the Alexander von Humboldt Foundation.
文摘PtCo nanoalloys(NAs)deposited on carbon black are emerging as robust electrocatalysts for addressing the sluggish kinetic issue of oxygen reduction reaction(ORR).However,developing a simple and low-cost method to synthesize PtCo/C with excellent performance is still a great challenge.In this work,a one-pot method was used to successfully obtain the PtCo NAs on commercial carbon supports of acetylene black and Ketjenblack ECP600JD,respectively.Compared with those grown on Ketjenblack ECP600JD,the PtCo NAs grown on acetylene black exhibited higher electrochemical surface area(ECSA)and mass activity(MA),which may be attributed to the different particle sizes of PtCo NAs,distinct hydrophilicity,electroconductivity and charge distribution between the carbon supports and PtCo NAs.Our study provides valuable insights into the optimal design of carbon-supported ORR electrocatalysts with exceptional activity and durability.