Heavy metal complexes with high mobility are widely distributed in wastewater from modern industries,which are mo re stable and refracto ry than free heavy metal ions.Their re movals from wastewater draw increasing at...Heavy metal complexes with high mobility are widely distributed in wastewater from modern industries,which are mo re stable and refracto ry than free heavy metal ions.Their re movals from wastewater draw increasing attentions and various technologies have been developed,among which advanced oxidation processes(AOPs)are more effectively and promising.Progresses on five representative types of AOPs,including Fenton(like)oxidation,electrochemical oxidation,photocatalytic oxidation,ozonation and discharge plasma oxidation for heavy metal complexe s degradation are summarized in this review.Their rationales,advantages,applications,challenges and prospects are introduced independently.Combinations among these AOPs,such as electrochemical Fenton oxidation and photoelectrocatalytic oxidation,are also comprehensively highlighted.Future efforts should be made to reduce acid requirement and scale up for practical applications of AOPs for heavy metal complex degradation efficiently and cost-effectively.展开更多
In recent years,with the emergence of new pollutants,the effective treatment of wastewater has become very important.Persulfate-based advanced oxidation processes have been successfully applied to the treatment of was...In recent years,with the emergence of new pollutants,the effective treatment of wastewater has become very important.Persulfate-based advanced oxidation processes have been successfully applied to the treatment of wastewater,such as wastewater containing antibiotics,pharmaceuticals and personal care products,dyes,endocrine-disrupting chemicals,chlorinated organic pollutants,and phenolics,for the degradation of refractory organic contaminants.This paper summarizes the production of sulfate radicals,which can be generated by the activation of persulfate via conventional and emerging approaches.The existing problems of persulfate-based advanced oxidation processes were analyzed in detail,including residual sulfates,coexisting factors(coexisting inorganic anions and natural organic matter),and energy consumption.This paper proposes corresponding possible solutions to the problems mentioned above,and this paper could provide a reference for the application of persulfate-based advanced oxidation processes in actual wastewater treatment.展开更多
The electrochemical advanced oxidation processes(EAOPs) have been extensively applied in the treatment of organic pollutants degradation.Herein,the mini review provides the coupling systems about EAOPs and different o...The electrochemical advanced oxidation processes(EAOPs) have been extensively applied in the treatment of organic pollutants degradation.Herein,the mini review provides the coupling systems about EAOPs and different oxidants(e.g.,persulfate(PS),peroxymonosulfate(PMS),and ozone(O3)),including EAOPs-PS systems,EAOPs-PMS systems,EAOPs-peroxone systems,and photoelectro-oxidants systems,for the organic compounds degradation.The coupling system of EAOPs with oxidants is an effective way to improve the generated free radicals(e.g.,HO^·and SO4^·-) concentration and to accelerate pollutant degradation.In this review,we make a summary of the homogeneous and heterogeneous EAOPs-oxidant processes.The reaction mechanisms of EAOPs combined with different oxidants are elucidated in detail,as well as the synergistic effect for improving the degradation and mineralization efficiency.展开更多
Herein,we prepa red novel three-dimensional(3D)gear-s haped Co3O4@C(Co3O4 modified by amorphous carbon)and sheet-like SnO2/CC(SnO2 grow on the carbon cloth)as anode and cathode to achieve efficient removal of 4-nitrop...Herein,we prepa red novel three-dimensional(3D)gear-s haped Co3O4@C(Co3O4 modified by amorphous carbon)and sheet-like SnO2/CC(SnO2 grow on the carbon cloth)as anode and cathode to achieve efficient removal of 4-nitrophenol(4-NP)in the presence of peroxymonosulfate(PMS)and simultaneous electrocatalytic reduction of CO2,respectively.In this process,4-NP was mineralized into CO2 by the Co3O4@C,and the generated CO2 was reduced into HCOOH by the sheet-like SnO2/CC cathode.Compared with the pure Co0.5(Co3O4 was prepared using 0.5 g urea)with PMS(30 mg,0.5 g/L),the degradation efficiency of 4-NP(60 mL,10 mg/L)increased from 74.5%-85.1%in 60 min using the Co0.5 modified by amorphous carbon(Co0.5@C).Furthermore,when the voltage of 1.0 V was added in the anodic system of Co0.5@C with PMS(30 mg,0.5 g/L),the degradation efficiency of 4-NP increased from 85.1%-99.1%when Pt was used as cathode.In the experiments of 4-NP degradation coupled with simultaneous electrocatalytic CO2 reduction,the degradation efficiency of 4-NP was 99.0%in the anodic system of Co0.5@C with addition of PMS(30 mg,0.5 g/L),while the Faraday efficiency(FE)of HCOOH was 24.1%at voltage of-1.3 V using the SnO2/CC as cathode.The results showed that the anode of Co3O4 modified by amorphous carbon can markedly improve the degradation efficiency of 4-NP,while the cathode of SnO2/CC can greatly improve the FE and selectivity of CO2 reduction to HCOOH and the stability of cathode.Finally,the promotion mechanism was proposed to explain the degradation of organic pollutants and reduction of CO2 into HCOOH in the process of electrocatalysis coupled with advanced oxidation processes(AOPs)and simultaneous CO2 reduction.展开更多
Refractory organic pollutants in water threaten human health and environmental safety,and advanced oxidation processes (AOPs) are effective for the degradation of these pollutants.Catalysts play vital role in AOPs,and...Refractory organic pollutants in water threaten human health and environmental safety,and advanced oxidation processes (AOPs) are effective for the degradation of these pollutants.Catalysts play vital role in AOPs,and Ce-based catalysts have exhibited excellent performance.Recently,the development and application of Ce-based catalysts in various AOPs have been reported.Our study conducts the first review in this rapid growing field.This paper clarifies the variety and properties of Ce-based catalysts.Their applications in different AOP systems (catalytic ozonation,photodegradation,Fenton-like reactions,sulfate radicalbased AOPs,and catalytic sonochemistry) are discussed.Different Ce-based catalysts suit different reaction systems and produce different active radicals.Finally,future research directions of Ce-based catalysts in AOP systems are suggested.展开更多
The carbon nanotubes(CNTs) as the emerging materials for organic pollutant removal have gradually become a burgeoning research field.Herein,a mini-review of CNTs-based materials curre ntly studies for organic pollutan...The carbon nanotubes(CNTs) as the emerging materials for organic pollutant removal have gradually become a burgeoning research field.Herein,a mini-review of CNTs-based materials curre ntly studies for organic pollutant elimination is presented.This review summarizes the preparation methods of CNTsbased materials.CNTs-based materials can be used as adsorbents to remove organic pollutants in wastewater.The adsorption mechanisms mainly include surface diffusio n,pore diffusion and adsorption reaction.Most importantly,an in-depth overview of CNTs-based materials currently available in advanced oxidation processes(AOPs) applications for wastewater treatment is proposed.CNTs-based materials can catalyze different oxidants(e.g.,hydrogen peroxide(H2 O2),persulfates(PMS/PDS),ozone(O3) and ferrate/permanganate(Fe(Ⅵ)/Mn(Ⅶ)) to generate more reactive oxygen species(ROS) for organic pollutant elimination.Moreover,the possible reaction mechanisms of removing organic pollutants by CNTs-based materials are summarized systematically and discussed in detail.Finally,application potential and future research directions of CNTs-based materials in the environmental remediation field are proposed.展开更多
Hospital sewage contains various harmful pharmaceutical contaminants(e.g.,antibiotics,anti-inflammatory agents,and painkillers)and pathogens(e.g.,bacteria,viruses,and parasites),whose direct discharge into the environ...Hospital sewage contains various harmful pharmaceutical contaminants(e.g.,antibiotics,anti-inflammatory agents,and painkillers)and pathogens(e.g.,bacteria,viruses,and parasites),whose direct discharge into the environment will induce diseases and pose a powerful threat to human health and safety,and environmental ecology.In recent years,advanced oxidation processes(AOPs),particularly photocatalysis,electrocatalysis,and ozone catalysis have been developed as widespread and effective techniques for hospital sewage treatments.However,there is a lack of systematic comparison and review of the prior studies on hospital sewage treatment using AOPs systems.This review elaborates on the mechanisms,removal efficiencies,and advantages/disadvantages of these AOPs systems for hospital wastewater decontamination and disinfection.Meanwhile,some novel and potential technologies such as photo-electrocatalysis,electro-peroxone,Fenton/Fenton-like,and piezoelectric catalysis are also included and summarized.Moreover,we further summarize and compare the capacity of these AOPs to treat the actual hospital wastewater under the impact of the water matrix and pH,and estimate the economic cost of these technologies for practical application.Finally,the future development directions of AOPs for hospital wastewater decontamination and disinfection have been prospected.Overall,this study provides a comparison and overview of these AOP systems in an attempt to raise extensive concerns about hospital wastewater decontamination and disinfection technologies and guide researchers to discover the future directions of technologies optimization,which would be a crucial step forward in the field of hospital sewage treatment.展开更多
Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been recognized as one of the biggest public health issues of the 21 st century. Both ARB and ARGs have been determined in water after tr...Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been recognized as one of the biggest public health issues of the 21 st century. Both ARB and ARGs have been determined in water after treatment with conventional disinfectants. Ultraviolet (UV) technology has been seen growth in application to disinfect the water. However, UV method alone is not adequate to degrade ARGs in water. Researchers are investigating the combination of UV with other oxidants (chlorine, hydrogen peroxide (H2O2), peroxymonosulfate (PMS), and photocatalysts) to harness the high reactivity of produced reactive species (C1-, C1O -, Cl2-,-OH, and SO4-_) in such processes with constituents of cell (e.g., deoxyribonucleic acid (DNA) and its components) in order to increase the degradation efficiency of ARGs. This paper briefly reviews the current status of different UV-based treatments (UV/chlorination, UV/H2O2, UV/PMS, and UV-photocatalysis) to degrade ARGs and to control horizontal gene transfer (HGT) in water. The review also provides discussion on the mechanism of degradation of ARGs and application of q-PCR and gel electrophoresis to obtain insights of the fate of ARGs during UV-based treatment processes.展开更多
As important emerging contaminants, antibiotics have caused potential hazards to the ecological environment and human health due to their extensive production and consumption. Among various techniques for removing ant...As important emerging contaminants, antibiotics have caused potential hazards to the ecological environment and human health due to their extensive production and consumption. Among various techniques for removing antibiotics from wastewater, H_(2)O_(2)-based advanced oxidation processes(AOPs) have received increasing attention due to their fast reaction rate and strong oxidation capability. Hence this review critically discusses:(i) Recent research progress of AOPs with the addition of H_(2)O_(2) for antibiotics removal through different methods of H_(2)O_(2) activation;(ii) recent advances in AOPs that can in-situ generate and activate H_(2)O_(2) for antibiotics removal;(iii) H_(2)O_(2)-based AOPs as a combination with other techniques for the degradation and mineralization of antibiotics in wastewater. Future perspectives about H_(2)O_(2)-based AOPs are also presented to grasp the future research trend in the area.展开更多
Spinning disk reactor(SDR)has emerged as a novel process intensification photocatalytic reactor,and it has higher mass transfer efficiency and photon utilization for the degradation of toxic organic pollutants by adva...Spinning disk reactor(SDR)has emerged as a novel process intensification photocatalytic reactor,and it has higher mass transfer efficiency and photon utilization for the degradation of toxic organic pollutants by advanced oxidation processes(AOPs).In this study,ZnO—TiO_(2)nanocomposites were prepared by solgel method,and coated on the disk of SDR by impregnation-pull-drying-calcination method.The performance of catalyst was characterized by X-ray diffraction,scanning electron microscope,X-ray photoelectron spectroscopy,photoluminescence and ultraviolet—visible diffuse reflectance spectroscopy.Photocatalytic ozonation in SDR was used to remove phenol,and various factors on degradation effect were studied in detail.The results showed that the rate of degradation and mineralization reached 100%and 83.4%under UV light irradiation after 50 min,compared with photocatalysis and ozonation,the removal rate increased by 69.3%and 34.7%,and mineralization rate increased by 56.7%and 62.9%,which indicated that the coupling of photocatalysis and ozonation had a synergistic effect.The radical capture experiments demonstrated that the active species such as photogenerated holes(h^(+)),hydroxyl radicals(·OH),superoxide radical(·O_(2)-)were responsible for phenol degradation,and·OH played a leading role in the degradation process,while h+and·O_(2)^(-)played a non-leading role.展开更多
The ubiquity of micropollutants(MPs)in aquatic environments has attracted increasing concern for public health and ecological security.Compared to conventional biological treatment,photocatalytic processes show more e...The ubiquity of micropollutants(MPs)in aquatic environments has attracted increasing concern for public health and ecological security.Compared to conventional biological treatment,photocatalytic processes show more efficiency in degrading MPs,but they require expensive materials and complicated synthesis processes.This study developed an economic photocatalytic process to degrade micropollutants.We synthesized urea-based graphitic carbon nitride(g-C_(3)N_(4))by a facile one-step pyrolysis method and evaluated the photocatalytic efficiency of carbamazepine(CBZ).Under simulated solar irradiation,g-C_(3)N_(4) could achieve 100% removal efficiency of 0.1 mg/L CBZ in spiked wastewater effluent within 15 min,and 86.5% removal efficiency in wastewater influent after 20 min of irradiation.The porous structure of g-C_(3)N_(4) promoted effective charge separation and mass transport of CBZ near the catalyst surface,enabling a high kinetic rate(0.3662 min^(-1)).Reactive oxygen species trapping experiments revealed that superoxide radicals(O_(2)^(·-))and holes(h^(+))were the major active radicals.Electron paramagnetic resonance(EPR)further confirmed the presence of O_(2)^(·-),·OH,^(1)O_(2) and holes.The pH,light intensity and initial CBZ concentration were found to have significant impacts on the removal efficiency of CBZ.Possible reaction intermediates were identified and the degradation pathway was proposed.Multiple MPs were selected to further demonstrate photocatalytic efficiency of g-C_(3)N_(4).The facile synthesis,superior efficiency,and versatility of g-C_(3)N_(4) make it a promising catalyst for application in tertiary wastewater treatment processes.展开更多
In the field of advanced oxidation processes(AOPs) of wastewater, many materials can be used as heterogeneous catalysts. The role of these catalysts is to activate oxidants and generate reactive oxygen species(ROS) to...In the field of advanced oxidation processes(AOPs) of wastewater, many materials can be used as heterogeneous catalysts. The role of these catalysts is to activate oxidants and generate reactive oxygen species(ROS) to decompose refractory pollutants. Perovskite oxide, an emerging catalyst in the field of AOPs, has been extensively studied in wastewater treatment. Nevertheless, the application of perovskite in AOP systems still faces some problems, such as leaching of metal ions, a small surface area, a low number of active sites, etc. Herein, this critical review comparatively examines the activation mechanisms of peroxymonosulfate, hydrogen peroxide, and peroxydisulfate. Furthermore, the formation pathways of oxidizing species based on recent advances in experimental and theoretical studies were evaluated. In addition, the impacts of water parameters and constituents such as initial p H, oxidant concentration, catalyst dosage,natural organic matter, halide, phosphate, and carbonate were discussed. Finally, a critical discussion and prospects of mechanism exploration and possible materials development are proposed to confront the existing challenges in the application of perovskite oxides in AOPs.展开更多
Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).T...Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated.It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds.And the main gaseous products are H_(2)O,H_(2),and HCl during the heating process.Besides,the ability of CG-FeCl_(2) to activate peroxymonosulfate(PMS)for catalytic degradation of polycyclic aromatic hydrocarbons(PAHs)and phenol was deeply studied.More than 95%of naphthyl,phenanthrene and phenol were removed under optimizied conditions.In addition,1O_(2),·OH,and SO_(4)·−were involved in the CG-FeCl_(2)/PMS system from the free radical scavenging experiment,where 1O_(2) played a major role during the oxidation process.Furthermore,CG-FeCl_(2)/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments.Overall,the novel CG-FeCl_(2) is an efficient and environmentally friendly catalyst,displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.展开更多
Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibi...Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibiotic resistance the first of six emerging issues of concern.Advanced oxidation processes(AOPs)that combine ultraviolet(UV)irradiation and chemical oxidation(primarily chlorine,hydrogen peroxide,and persulfate)have attracted increasing interest as advanced water and wastewater treatment technologies.These integrated technologies have been reported to significantly elevate the efficiencies of ARB inactivation and ARG degradation compared with direct UV irradiation or chemical oxidation alone due to the generation of multiple reactive species.In this study,the performance and underlying mechanisms of UV/chlorine,UV/hydrogen peroxide,and UV/persulfate processes for controlling ARB and ARGs were reviewed based on recent studies.Factors affecting the process-specific efficiency in controlling ARB and ARGs were discussed,including biotic factors,oxidant dose,UV fluence,pH,and water matrix properties.In addition,the cost-effectiveness of the UV-based AOPs was evaluated using the concept of electrical energy per order.The UV/chlorine process exhibited a higher efficiency with lower energy consumption than other UV-based AOPs in the wastewater matrix,indicating its potential for ARB inactivation and ARG degradation in wastewater treatment.Further studies are required to address the trade-off between toxic byproduct formation and the energy efficiency of the UV/chlorine process in real wastewater to facilitate its optimization and application in the control of ARB and ARGs.展开更多
Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-c...Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment.展开更多
基金the National Natural Science Foundation of China(NSFC)(No.41672237)the Beijing Natural Science Foundation(No.8192040)。
文摘Heavy metal complexes with high mobility are widely distributed in wastewater from modern industries,which are mo re stable and refracto ry than free heavy metal ions.Their re movals from wastewater draw increasing attentions and various technologies have been developed,among which advanced oxidation processes(AOPs)are more effectively and promising.Progresses on five representative types of AOPs,including Fenton(like)oxidation,electrochemical oxidation,photocatalytic oxidation,ozonation and discharge plasma oxidation for heavy metal complexe s degradation are summarized in this review.Their rationales,advantages,applications,challenges and prospects are introduced independently.Combinations among these AOPs,such as electrochemical Fenton oxidation and photoelectrocatalytic oxidation,are also comprehensively highlighted.Future efforts should be made to reduce acid requirement and scale up for practical applications of AOPs for heavy metal complex degradation efficiently and cost-effectively.
基金the National Natural Science Foundation of China(No.51678185)Talents of High Level Scientific Research Foundation of Qingdao Agricultural University(No.6651120004).
文摘In recent years,with the emergence of new pollutants,the effective treatment of wastewater has become very important.Persulfate-based advanced oxidation processes have been successfully applied to the treatment of wastewater,such as wastewater containing antibiotics,pharmaceuticals and personal care products,dyes,endocrine-disrupting chemicals,chlorinated organic pollutants,and phenolics,for the degradation of refractory organic contaminants.This paper summarizes the production of sulfate radicals,which can be generated by the activation of persulfate via conventional and emerging approaches.The existing problems of persulfate-based advanced oxidation processes were analyzed in detail,including residual sulfates,coexisting factors(coexisting inorganic anions and natural organic matter),and energy consumption.This paper proposes corresponding possible solutions to the problems mentioned above,and this paper could provide a reference for the application of persulfate-based advanced oxidation processes in actual wastewater treatment.
基金the financial support from the National Natural Science Foundation of China(No. 51878423)Graduate Student’s Research and Innovation Fund of Sichuan University(No.2018YJSY075)
文摘The electrochemical advanced oxidation processes(EAOPs) have been extensively applied in the treatment of organic pollutants degradation.Herein,the mini review provides the coupling systems about EAOPs and different oxidants(e.g.,persulfate(PS),peroxymonosulfate(PMS),and ozone(O3)),including EAOPs-PS systems,EAOPs-PMS systems,EAOPs-peroxone systems,and photoelectro-oxidants systems,for the organic compounds degradation.The coupling system of EAOPs with oxidants is an effective way to improve the generated free radicals(e.g.,HO^·and SO4^·-) concentration and to accelerate pollutant degradation.In this review,we make a summary of the homogeneous and heterogeneous EAOPs-oxidant processes.The reaction mechanisms of EAOPs combined with different oxidants are elucidated in detail,as well as the synergistic effect for improving the degradation and mineralization efficiency.
基金the National Natural Science Foundation of China(Nos.51878325,51868050,51622806,51378246 and 51720105001)the Natural Science Foundation of Jiangxi Province(Nos.20162BCB22017,20165BCB18008,20171ACB20017,20133ACB21001 and 20171BAB206049)the Graduate Innovation Fund of Jiangxi Province(No.YC2018-S360)。
文摘Herein,we prepa red novel three-dimensional(3D)gear-s haped Co3O4@C(Co3O4 modified by amorphous carbon)and sheet-like SnO2/CC(SnO2 grow on the carbon cloth)as anode and cathode to achieve efficient removal of 4-nitrophenol(4-NP)in the presence of peroxymonosulfate(PMS)and simultaneous electrocatalytic reduction of CO2,respectively.In this process,4-NP was mineralized into CO2 by the Co3O4@C,and the generated CO2 was reduced into HCOOH by the sheet-like SnO2/CC cathode.Compared with the pure Co0.5(Co3O4 was prepared using 0.5 g urea)with PMS(30 mg,0.5 g/L),the degradation efficiency of 4-NP(60 mL,10 mg/L)increased from 74.5%-85.1%in 60 min using the Co0.5 modified by amorphous carbon(Co0.5@C).Furthermore,when the voltage of 1.0 V was added in the anodic system of Co0.5@C with PMS(30 mg,0.5 g/L),the degradation efficiency of 4-NP increased from 85.1%-99.1%when Pt was used as cathode.In the experiments of 4-NP degradation coupled with simultaneous electrocatalytic CO2 reduction,the degradation efficiency of 4-NP was 99.0%in the anodic system of Co0.5@C with addition of PMS(30 mg,0.5 g/L),while the Faraday efficiency(FE)of HCOOH was 24.1%at voltage of-1.3 V using the SnO2/CC as cathode.The results showed that the anode of Co3O4 modified by amorphous carbon can markedly improve the degradation efficiency of 4-NP,while the cathode of SnO2/CC can greatly improve the FE and selectivity of CO2 reduction to HCOOH and the stability of cathode.Finally,the promotion mechanism was proposed to explain the degradation of organic pollutants and reduction of CO2 into HCOOH in the process of electrocatalysis coupled with advanced oxidation processes(AOPs)and simultaneous CO2 reduction.
基金supported by National Water Pollution Control and Treatment Science and Technology Major Project (No.2018ZX07110003)the National Natural Science Foundation of China (No.51779068)。
文摘Refractory organic pollutants in water threaten human health and environmental safety,and advanced oxidation processes (AOPs) are effective for the degradation of these pollutants.Catalysts play vital role in AOPs,and Ce-based catalysts have exhibited excellent performance.Recently,the development and application of Ce-based catalysts in various AOPs have been reported.Our study conducts the first review in this rapid growing field.This paper clarifies the variety and properties of Ce-based catalysts.Their applications in different AOP systems (catalytic ozonation,photodegradation,Fenton-like reactions,sulfate radicalbased AOPs,and catalytic sonochemistry) are discussed.Different Ce-based catalysts suit different reaction systems and produce different active radicals.Finally,future research directions of Ce-based catalysts in AOP systems are suggested.
基金The authors would like to acknowledge the financial support from the National Natural Science Foundation of China(No.51878423)Fundamental Research Funds for the Central Universities(No.2018SCUH0071)Excellent Youth Foundation of Sichuan Scientific Committee(No.2019JDJQ0005).
文摘The carbon nanotubes(CNTs) as the emerging materials for organic pollutant removal have gradually become a burgeoning research field.Herein,a mini-review of CNTs-based materials curre ntly studies for organic pollutant elimination is presented.This review summarizes the preparation methods of CNTsbased materials.CNTs-based materials can be used as adsorbents to remove organic pollutants in wastewater.The adsorption mechanisms mainly include surface diffusio n,pore diffusion and adsorption reaction.Most importantly,an in-depth overview of CNTs-based materials currently available in advanced oxidation processes(AOPs) applications for wastewater treatment is proposed.CNTs-based materials can catalyze different oxidants(e.g.,hydrogen peroxide(H2 O2),persulfates(PMS/PDS),ozone(O3) and ferrate/permanganate(Fe(Ⅵ)/Mn(Ⅶ)) to generate more reactive oxygen species(ROS) for organic pollutant elimination.Moreover,the possible reaction mechanisms of removing organic pollutants by CNTs-based materials are summarized systematically and discussed in detail.Finally,application potential and future research directions of CNTs-based materials in the environmental remediation field are proposed.
基金the National Natural Science Foundation of China(Nos.52170088 and 52070133)China Postdoctoral Science Foundation(No.2021M690844)Sichuan Science and Technology Program(No.2021JDRC0027)for financially supporting this study.
文摘Hospital sewage contains various harmful pharmaceutical contaminants(e.g.,antibiotics,anti-inflammatory agents,and painkillers)and pathogens(e.g.,bacteria,viruses,and parasites),whose direct discharge into the environment will induce diseases and pose a powerful threat to human health and safety,and environmental ecology.In recent years,advanced oxidation processes(AOPs),particularly photocatalysis,electrocatalysis,and ozone catalysis have been developed as widespread and effective techniques for hospital sewage treatments.However,there is a lack of systematic comparison and review of the prior studies on hospital sewage treatment using AOPs systems.This review elaborates on the mechanisms,removal efficiencies,and advantages/disadvantages of these AOPs systems for hospital wastewater decontamination and disinfection.Meanwhile,some novel and potential technologies such as photo-electrocatalysis,electro-peroxone,Fenton/Fenton-like,and piezoelectric catalysis are also included and summarized.Moreover,we further summarize and compare the capacity of these AOPs to treat the actual hospital wastewater under the impact of the water matrix and pH,and estimate the economic cost of these technologies for practical application.Finally,the future development directions of AOPs for hospital wastewater decontamination and disinfection have been prospected.Overall,this study provides a comparison and overview of these AOP systems in an attempt to raise extensive concerns about hospital wastewater decontamination and disinfection technologies and guide researchers to discover the future directions of technologies optimization,which would be a crucial step forward in the field of hospital sewage treatment.
文摘Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been recognized as one of the biggest public health issues of the 21 st century. Both ARB and ARGs have been determined in water after treatment with conventional disinfectants. Ultraviolet (UV) technology has been seen growth in application to disinfect the water. However, UV method alone is not adequate to degrade ARGs in water. Researchers are investigating the combination of UV with other oxidants (chlorine, hydrogen peroxide (H2O2), peroxymonosulfate (PMS), and photocatalysts) to harness the high reactivity of produced reactive species (C1-, C1O -, Cl2-,-OH, and SO4-_) in such processes with constituents of cell (e.g., deoxyribonucleic acid (DNA) and its components) in order to increase the degradation efficiency of ARGs. This paper briefly reviews the current status of different UV-based treatments (UV/chlorination, UV/H2O2, UV/PMS, and UV-photocatalysis) to degrade ARGs and to control horizontal gene transfer (HGT) in water. The review also provides discussion on the mechanism of degradation of ARGs and application of q-PCR and gel electrophoresis to obtain insights of the fate of ARGs during UV-based treatment processes.
基金financially supported by National Natural Science Foundation of China(Nos.21976096,52170085 and 21773129)Tianjin Development Program for Innovation and Entrepreneurship+2 种基金Key Project of Natural Science Foundation of Tianjin(No.21JCZDJC00320)Tianjin Post-graduate Students Research and Innovation Project(No.2021YJSB013)Fundamental Research Funds for the Central Universities,Nankai University。
文摘As important emerging contaminants, antibiotics have caused potential hazards to the ecological environment and human health due to their extensive production and consumption. Among various techniques for removing antibiotics from wastewater, H_(2)O_(2)-based advanced oxidation processes(AOPs) have received increasing attention due to their fast reaction rate and strong oxidation capability. Hence this review critically discusses:(i) Recent research progress of AOPs with the addition of H_(2)O_(2) for antibiotics removal through different methods of H_(2)O_(2) activation;(ii) recent advances in AOPs that can in-situ generate and activate H_(2)O_(2) for antibiotics removal;(iii) H_(2)O_(2)-based AOPs as a combination with other techniques for the degradation and mineralization of antibiotics in wastewater. Future perspectives about H_(2)O_(2)-based AOPs are also presented to grasp the future research trend in the area.
基金supported by the National Natural Science Foundation of China(22208328)Fundamental Research Program of Shanxi Province(20210302124618,202203021212134)。
文摘Spinning disk reactor(SDR)has emerged as a novel process intensification photocatalytic reactor,and it has higher mass transfer efficiency and photon utilization for the degradation of toxic organic pollutants by advanced oxidation processes(AOPs).In this study,ZnO—TiO_(2)nanocomposites were prepared by solgel method,and coated on the disk of SDR by impregnation-pull-drying-calcination method.The performance of catalyst was characterized by X-ray diffraction,scanning electron microscope,X-ray photoelectron spectroscopy,photoluminescence and ultraviolet—visible diffuse reflectance spectroscopy.Photocatalytic ozonation in SDR was used to remove phenol,and various factors on degradation effect were studied in detail.The results showed that the rate of degradation and mineralization reached 100%and 83.4%under UV light irradiation after 50 min,compared with photocatalysis and ozonation,the removal rate increased by 69.3%and 34.7%,and mineralization rate increased by 56.7%and 62.9%,which indicated that the coupling of photocatalysis and ozonation had a synergistic effect.The radical capture experiments demonstrated that the active species such as photogenerated holes(h^(+)),hydroxyl radicals(·OH),superoxide radical(·O_(2)-)were responsible for phenol degradation,and·OH played a leading role in the degradation process,while h+and·O_(2)^(-)played a non-leading role.
基金funding support through the project DP 170104330the support by Australian Research Council Future Fellowship(FT170100196).
文摘The ubiquity of micropollutants(MPs)in aquatic environments has attracted increasing concern for public health and ecological security.Compared to conventional biological treatment,photocatalytic processes show more efficiency in degrading MPs,but they require expensive materials and complicated synthesis processes.This study developed an economic photocatalytic process to degrade micropollutants.We synthesized urea-based graphitic carbon nitride(g-C_(3)N_(4))by a facile one-step pyrolysis method and evaluated the photocatalytic efficiency of carbamazepine(CBZ).Under simulated solar irradiation,g-C_(3)N_(4) could achieve 100% removal efficiency of 0.1 mg/L CBZ in spiked wastewater effluent within 15 min,and 86.5% removal efficiency in wastewater influent after 20 min of irradiation.The porous structure of g-C_(3)N_(4) promoted effective charge separation and mass transport of CBZ near the catalyst surface,enabling a high kinetic rate(0.3662 min^(-1)).Reactive oxygen species trapping experiments revealed that superoxide radicals(O_(2)^(·-))and holes(h^(+))were the major active radicals.Electron paramagnetic resonance(EPR)further confirmed the presence of O_(2)^(·-),·OH,^(1)O_(2) and holes.The pH,light intensity and initial CBZ concentration were found to have significant impacts on the removal efficiency of CBZ.Possible reaction intermediates were identified and the degradation pathway was proposed.Multiple MPs were selected to further demonstrate photocatalytic efficiency of g-C_(3)N_(4).The facile synthesis,superior efficiency,and versatility of g-C_(3)N_(4) make it a promising catalyst for application in tertiary wastewater treatment processes.
基金financial support from National Key R&D Program of China (No.2019YFD1100200)National Natural Science Foundation of China (Nos.51878431,51961145106)+2 种基金Shanghai Rising-Star Program (No.20QC1401200)Shanghai Science and Technology Committee (No.19DZ1208400)State Key Laboratory of Pollution Control and Resource Reuse Foundation,(No.PCRRE20002)。
文摘In the field of advanced oxidation processes(AOPs) of wastewater, many materials can be used as heterogeneous catalysts. The role of these catalysts is to activate oxidants and generate reactive oxygen species(ROS) to decompose refractory pollutants. Perovskite oxide, an emerging catalyst in the field of AOPs, has been extensively studied in wastewater treatment. Nevertheless, the application of perovskite in AOP systems still faces some problems, such as leaching of metal ions, a small surface area, a low number of active sites, etc. Herein, this critical review comparatively examines the activation mechanisms of peroxymonosulfate, hydrogen peroxide, and peroxydisulfate. Furthermore, the formation pathways of oxidizing species based on recent advances in experimental and theoretical studies were evaluated. In addition, the impacts of water parameters and constituents such as initial p H, oxidant concentration, catalyst dosage,natural organic matter, halide, phosphate, and carbonate were discussed. Finally, a critical discussion and prospects of mechanism exploration and possible materials development are proposed to confront the existing challenges in the application of perovskite oxides in AOPs.
基金National Key R&D Program of China(2019YFC1904903 and 2020YFC1806504)China Postdoctoral Science Foundation(2020M680757)Fundamental Research Funds for the Central Universities(2022XJHH08).
文摘Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated.It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds.And the main gaseous products are H_(2)O,H_(2),and HCl during the heating process.Besides,the ability of CG-FeCl_(2) to activate peroxymonosulfate(PMS)for catalytic degradation of polycyclic aromatic hydrocarbons(PAHs)and phenol was deeply studied.More than 95%of naphthyl,phenanthrene and phenol were removed under optimizied conditions.In addition,1O_(2),·OH,and SO_(4)·−were involved in the CG-FeCl_(2)/PMS system from the free radical scavenging experiment,where 1O_(2) played a major role during the oxidation process.Furthermore,CG-FeCl_(2)/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments.Overall,the novel CG-FeCl_(2) is an efficient and environmentally friendly catalyst,displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.
基金supported by grants from the Research Grants Council of the Hong Kong SAR,China(T21-705/20-N and 16210221).
文摘Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibiotic resistance the first of six emerging issues of concern.Advanced oxidation processes(AOPs)that combine ultraviolet(UV)irradiation and chemical oxidation(primarily chlorine,hydrogen peroxide,and persulfate)have attracted increasing interest as advanced water and wastewater treatment technologies.These integrated technologies have been reported to significantly elevate the efficiencies of ARB inactivation and ARG degradation compared with direct UV irradiation or chemical oxidation alone due to the generation of multiple reactive species.In this study,the performance and underlying mechanisms of UV/chlorine,UV/hydrogen peroxide,and UV/persulfate processes for controlling ARB and ARGs were reviewed based on recent studies.Factors affecting the process-specific efficiency in controlling ARB and ARGs were discussed,including biotic factors,oxidant dose,UV fluence,pH,and water matrix properties.In addition,the cost-effectiveness of the UV-based AOPs was evaluated using the concept of electrical energy per order.The UV/chlorine process exhibited a higher efficiency with lower energy consumption than other UV-based AOPs in the wastewater matrix,indicating its potential for ARB inactivation and ARG degradation in wastewater treatment.Further studies are required to address the trade-off between toxic byproduct formation and the energy efficiency of the UV/chlorine process in real wastewater to facilitate its optimization and application in the control of ARB and ARGs.
基金supported by National Natural Science Foundation of China(52003240)Zhejiang Provincial Natural Science Foundation of China(LQ21B070007)China Postdoctoral Science Foundation(2022M722818).
文摘Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment.