Coherent X-ray microscopy has advanced towards higher-energy, more brilliant sources over the past decade since its demonstrations, and many advancements have been made towards optimizing this imaging technique. Here ...Coherent X-ray microscopy has advanced towards higher-energy, more brilliant sources over the past decade since its demonstrations, and many advancements have been made towards optimizing this imaging technique. Here we present both the experimental instrument for obtaining diffraction patterns and the primary reconstruction of yeast cell 2D projection. In addition, the characteristics of the existing optics at BL29XUL of SPring-8 Facility and the method of image reconstruction are discussed.展开更多
An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the propos...An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the proposed second-order oversampling reconstruction algorithm and local gradient image reconstruction algorithm. In this paper, we describe the local gradient image reconstruction model, the error correction technique, down-sampling model and the error correction principle. In this paper, we use a Lena original image and four low-resolution images obtained from the standard half-pixel displacement to simulate and verify the effectiveness of the proposed technique. In order to verify the effectiveness of the proposed technique, two groups of low-resolution thermal microscope images are collected by the actual thermal microscope imaging system for experimental study. Simulations and experiments show that the proposed technique can reduce the optical micro-scanning errors, improve the imaging effect of the system and improve the system's spatial resolution. It can be applied to other electro-optical imaging systems to improve their resolution.展开更多
基金Supported by 973 Program of the Ministry of Science and Technology (2009CB918600)
文摘Coherent X-ray microscopy has advanced towards higher-energy, more brilliant sources over the past decade since its demonstrations, and many advancements have been made towards optimizing this imaging technique. Here we present both the experimental instrument for obtaining diffraction patterns and the primary reconstruction of yeast cell 2D projection. In addition, the characteristics of the existing optics at BL29XUL of SPring-8 Facility and the method of image reconstruction are discussed.
基金Supported by Postgraduate Innovation Funding Project of Hebei Province(CXZZSS2019050)the Qinhuangdao City Key Research and Development Program Science and Technology Support Project(201801B010)
文摘An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the proposed second-order oversampling reconstruction algorithm and local gradient image reconstruction algorithm. In this paper, we describe the local gradient image reconstruction model, the error correction technique, down-sampling model and the error correction principle. In this paper, we use a Lena original image and four low-resolution images obtained from the standard half-pixel displacement to simulate and verify the effectiveness of the proposed technique. In order to verify the effectiveness of the proposed technique, two groups of low-resolution thermal microscope images are collected by the actual thermal microscope imaging system for experimental study. Simulations and experiments show that the proposed technique can reduce the optical micro-scanning errors, improve the imaging effect of the system and improve the system's spatial resolution. It can be applied to other electro-optical imaging systems to improve their resolution.