This study established a novel method for the simultaneous detection of two-component gases.Radio frequency(RF)white noise disturbance laser current and wavelength modulation were simultaneously used to improve the of...This study established a novel method for the simultaneous detection of two-component gases.Radio frequency(RF)white noise disturbance laser current and wavelength modulation were simultaneously used to improve the off-axis integrated cavity output spectroscopy technique,and a high-precision dual modulation OA-ICOS(RF-WM-OA-ICOS)system was established.The two laser beams were coupled into one laser beam that was applied incident to the cavity of RF-WM-OA-ICOS system.The second harmonic signals of CH_(4)and CO_(2)gas simultaneously appeared in the rising or falling edge of a triangular wave.This method was used to measure CH_(4)and CO_(2)with different concentrations.The results indicated that the proposed system has high stability and can accurately and simultaneously measure the concentrations of CH_(4)and CO_(2),with an optimal integration time of 220 s.The minimum detection limit was 10 ppb for CH_(4)and 1.5 ppm for CO_(2).The corresponding noise equivalent absorption sensitivity values were calculated as 2.67×10^(-13)cm^(-1)·Hz^(-1/2)and 5.18×10^(-11)cm^(-1)·Hz^(-1/2),respectively.The proposed dual-component gas simultaneous detection method can also be used for high-precision simultaneous detection of other gases.Therefore,this study may serve as a reference for developing portable multicomponent gas analyzers.展开更多
To meet the demands for a number of LEDs,a novel charge pump circuit with current mode control is proposed.Regulation is achieved by operating the current mirrors and the output current of the operational transconduct...To meet the demands for a number of LEDs,a novel charge pump circuit with current mode control is proposed.Regulation is achieved by operating the current mirrors and the output current of the operational transconductance amplifier.In the steady state,the input current from power voltage retains constant,so reducing the noise induced on the input voltage source and improving the output voltage ripple.The charge pump small-signal model is used to describe the device’s dynamic behavior and stability.Analytical predictions were verified by Hspice simulation and testing.Load driving is up to 800 mA with a power voltage of 3.6 V,and the output voltage ripple is less than 45 mV.The output response time is less than 8μs,and the load current jumps from 400 to 800 mA.展开更多
This paper deals with internally generated noise of bioelectric amplifiers that are usually used for processing of bioelectric events. The main purpose of this paper is to present a procedure for analysis of the effec...This paper deals with internally generated noise of bioelectric amplifiers that are usually used for processing of bioelectric events. The main purpose of this paper is to present a procedure for analysis of the effects of internal noise generated by the active circuits and to evaluate the output noise of the author's new designed bioelectric amplifier that caused by internal effects to the amplifier circuit itself in order to compare it with the noise generated by conventional amplifiers. The obtained analysis results of internally generated noise showed that the total output noise of bioelectric active circuits does not increase when some of their resistors have a larger value. This behavior is caused by the different transfer functions for the signal and the respective noise sources associated with these resistors. Moreover, the new designed bioelectric amplifier has an output noise less than that for conventional amplifiers. The obtained analysis results were also experimentally verified and the final conclusions were drawn.展开更多
This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The spec...This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.展开更多
High Resolution Wide Swath (HRWS) Synthetic Aperture Radar (SAR) often suffers from low Signal-to-Noise Ratio (SNR) due to small transmitting antenna, especially in phased array antenna systems. Digital Beam Forming (...High Resolution Wide Swath (HRWS) Synthetic Aperture Radar (SAR) often suffers from low Signal-to-Noise Ratio (SNR) due to small transmitting antenna, especially in phased array antenna systems. Digital Beam Forming (DBF) based on Single Input and Multiple Output (SIMO) achieves receiving array gain at the cost of increasing data rate. This letter proposes a new HRWS SAR method, which employs intra-pulse null steering to get receiving gain in elevation and decrease the data rate, and Multiple Input and Multiple Output (MIMO) using Space-Time Block Coding (STBC) in azimuth to get transmitting gain and receiving array gain simultaneously. The feasibility is verified by deduction and simulations.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62005108 and 62205134)the National Key Research and Development Program of China(Grant No.2022YFC2807701)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(Grant Nos.20KJB140009 and 21KJB140008)。
文摘This study established a novel method for the simultaneous detection of two-component gases.Radio frequency(RF)white noise disturbance laser current and wavelength modulation were simultaneously used to improve the off-axis integrated cavity output spectroscopy technique,and a high-precision dual modulation OA-ICOS(RF-WM-OA-ICOS)system was established.The two laser beams were coupled into one laser beam that was applied incident to the cavity of RF-WM-OA-ICOS system.The second harmonic signals of CH_(4)and CO_(2)gas simultaneously appeared in the rising or falling edge of a triangular wave.This method was used to measure CH_(4)and CO_(2)with different concentrations.The results indicated that the proposed system has high stability and can accurately and simultaneously measure the concentrations of CH_(4)and CO_(2),with an optimal integration time of 220 s.The minimum detection limit was 10 ppb for CH_(4)and 1.5 ppm for CO_(2).The corresponding noise equivalent absorption sensitivity values were calculated as 2.67×10^(-13)cm^(-1)·Hz^(-1/2)and 5.18×10^(-11)cm^(-1)·Hz^(-1/2),respectively.The proposed dual-component gas simultaneous detection method can also be used for high-precision simultaneous detection of other gases.Therefore,this study may serve as a reference for developing portable multicomponent gas analyzers.
基金supported by the National Natural Science Foundation of China(No.60876023)
文摘To meet the demands for a number of LEDs,a novel charge pump circuit with current mode control is proposed.Regulation is achieved by operating the current mirrors and the output current of the operational transconductance amplifier.In the steady state,the input current from power voltage retains constant,so reducing the noise induced on the input voltage source and improving the output voltage ripple.The charge pump small-signal model is used to describe the device’s dynamic behavior and stability.Analytical predictions were verified by Hspice simulation and testing.Load driving is up to 800 mA with a power voltage of 3.6 V,and the output voltage ripple is less than 45 mV.The output response time is less than 8μs,and the load current jumps from 400 to 800 mA.
文摘This paper deals with internally generated noise of bioelectric amplifiers that are usually used for processing of bioelectric events. The main purpose of this paper is to present a procedure for analysis of the effects of internal noise generated by the active circuits and to evaluate the output noise of the author's new designed bioelectric amplifier that caused by internal effects to the amplifier circuit itself in order to compare it with the noise generated by conventional amplifiers. The obtained analysis results of internally generated noise showed that the total output noise of bioelectric active circuits does not increase when some of their resistors have a larger value. This behavior is caused by the different transfer functions for the signal and the respective noise sources associated with these resistors. Moreover, the new designed bioelectric amplifier has an output noise less than that for conventional amplifiers. The obtained analysis results were also experimentally verified and the final conclusions were drawn.
基金Supported by the National Natural Science Foundation of China(No.60496311)
文摘This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.
文摘High Resolution Wide Swath (HRWS) Synthetic Aperture Radar (SAR) often suffers from low Signal-to-Noise Ratio (SNR) due to small transmitting antenna, especially in phased array antenna systems. Digital Beam Forming (DBF) based on Single Input and Multiple Output (SIMO) achieves receiving array gain at the cost of increasing data rate. This letter proposes a new HRWS SAR method, which employs intra-pulse null steering to get receiving gain in elevation and decrease the data rate, and Multiple Input and Multiple Output (MIMO) using Space-Time Block Coding (STBC) in azimuth to get transmitting gain and receiving array gain simultaneously. The feasibility is verified by deduction and simulations.