An approach is proposed to analyze pole assignment robustness in some specific regions for linear variable structure control systems subject to structured perturbations.A sufficient condition of robustness is presente...An approach is proposed to analyze pole assignment robustness in some specific regions for linear variable structure control systems subject to structured perturbations.A sufficient condition of robustness is presented and the upper bound of structured perturbations which ensure the robustness is computed by numerical analysis.展开更多
Effective probing current-induced magnetization switching is highly required in the study of emerging spin-orbit torque(SOT)effect.However,the measurement of in-plane magnetization switching typically relies on the gi...Effective probing current-induced magnetization switching is highly required in the study of emerging spin-orbit torque(SOT)effect.However,the measurement of in-plane magnetization switching typically relies on the giant/tunneling magnetoresistance measurement in a spin valve structure calling for complicated fabrication process,or the non-electric approach of Kerr imaging technique.Here,we present a reliable and convenient method to electrically probe the SOT-induced in-plane magnetization switching in a simple Hall bar device through analyzing the MR signal modified by a magnetic field.In this case,the symmetry of MR is broken,resulting in a resistance difference for opposite magnetization orientations.Moreover,the feasibility of our method is widely evidenced in heavy metal/ferromagnet(Pt/Ni_(20)Fe_(80) and W/Co_(20)Fe_(60)B_(20))and the topological insulator/ferromagnet(Bi_(2)Se_(3)/Ni_(20)Fe_(80)).Our work simplifies the characterization process of the in-plane magnetization switching,which can promote the development of SOT-based devices.展开更多
文摘An approach is proposed to analyze pole assignment robustness in some specific regions for linear variable structure control systems subject to structured perturbations.A sufficient condition of robustness is presented and the upper bound of structured perturbations which ensure the robustness is computed by numerical analysis.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11904017, 11974145, 51901008, and 12004024)Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020ZD28)+1 种基金platform from Qingdao Science and Technology Commissionthe Fundamental Research Funds for the Central Universities of China
文摘Effective probing current-induced magnetization switching is highly required in the study of emerging spin-orbit torque(SOT)effect.However,the measurement of in-plane magnetization switching typically relies on the giant/tunneling magnetoresistance measurement in a spin valve structure calling for complicated fabrication process,or the non-electric approach of Kerr imaging technique.Here,we present a reliable and convenient method to electrically probe the SOT-induced in-plane magnetization switching in a simple Hall bar device through analyzing the MR signal modified by a magnetic field.In this case,the symmetry of MR is broken,resulting in a resistance difference for opposite magnetization orientations.Moreover,the feasibility of our method is widely evidenced in heavy metal/ferromagnet(Pt/Ni_(20)Fe_(80) and W/Co_(20)Fe_(60)B_(20))and the topological insulator/ferromagnet(Bi_(2)Se_(3)/Ni_(20)Fe_(80)).Our work simplifies the characterization process of the in-plane magnetization switching,which can promote the development of SOT-based devices.