Nanostructure photodetectors,as the core component of optoelectronic devices,are mainly focused on the precise preparation of mixed-component nano-heterostructures and the realization of zero power consumption devices...Nanostructure photodetectors,as the core component of optoelectronic devices,are mainly focused on the precise preparation of mixed-component nano-heterostructures and the realization of zero power consumption devices.Herein,we successfully fabricated n-GaN/p-ZnTe core/shell nanopillar array and realized self-power ultraviolet/violet photodetection.The radial heterojunction nanodevice reveals high light-dark current ratio of 104 at 0 V bias,indicating effective carriers’separation.And more,by integrating plasmonic effect,the responsivity and detectivity of the Au nanoparticles decorated device are increased from 3.85 to 148.83 mA/W and 4.45×1011 to 2.33×1012 Jones under 325 nm UV light irradiation.While the rise and the fall time are decreased 1.3 times and 6.8 times under 520 nm visible light irradiation at 0 V bias.The high photocurrent gain is derived from that the oscillating high-energy hot electrons in Au nanoparticles spontaneously inject into the ZnTe conduction band to involve the photodetection process.This work presents an effective route to prepare high-performance self-power photodetector and provides a promising blueprint to realize different functional photoelectronic devices based on core/shell nanostructure.展开更多
In this study, we designed and synthesized a novel battery-type electrode featuring three-dimensional(3D) hierarchical ZnO@Ni_xCo_(1-x)(OH)_y core/shell nanowire/nanosheet arrays arranged on Nifoam substrate via a two...In this study, we designed and synthesized a novel battery-type electrode featuring three-dimensional(3D) hierarchical ZnO@Ni_xCo_(1-x)(OH)_y core/shell nanowire/nanosheet arrays arranged on Nifoam substrate via a two-step protocol including a wet chemical process followed by electro-deposition. We then characterized its composition, structure and surface morphology by X-ray diff raction, energy-dispersive X-ray spectrometry(EDS), X-ray photoelectron spectroscopy, scanning electron microscopy(SEM), transmission electron microscopy, EDS elemental mapping. Our electrochemical measurements show that the ZnO@Ni_(0.67)Co_(0.33)(OH)_y electrode material exhibited a noticeably high specific capacity of as much as 255(mA ·h)/g at 1 A/g. Additionally, it demonstrated a superior rate capability, as well as an excellent cycling stability with 81.6% capacity retention over 2000 cycles at 5 A/g. This sample delivered a high energy density of 64 W·h/kg and a power density of 250 W/kg at a current density of 1 A/g. With such remarkable electrochemical properties, we expect the 3D hierarchical hybrid electrode material presented in this work to have promising applications for the next generation of energy storage systems.展开更多
More and more out of core problems that involve solving large amounts of data are researched by scientists. The computational grid provides a wide and scalable environment for those large scale computations. A new met...More and more out of core problems that involve solving large amounts of data are researched by scientists. The computational grid provides a wide and scalable environment for those large scale computations. A new method supporting out of core computations on grids is presented in this paper. The framework and the data storage strategy are described, based on which an easy and efficient out of core programming interface is provided for the programmers.展开更多
基金the National Natural Science Foundation of China(Nos.62075041,62375049,and 62335003)the Basic Research Program of Jiangsu Province(No.BK20222007).
文摘Nanostructure photodetectors,as the core component of optoelectronic devices,are mainly focused on the precise preparation of mixed-component nano-heterostructures and the realization of zero power consumption devices.Herein,we successfully fabricated n-GaN/p-ZnTe core/shell nanopillar array and realized self-power ultraviolet/violet photodetection.The radial heterojunction nanodevice reveals high light-dark current ratio of 104 at 0 V bias,indicating effective carriers’separation.And more,by integrating plasmonic effect,the responsivity and detectivity of the Au nanoparticles decorated device are increased from 3.85 to 148.83 mA/W and 4.45×1011 to 2.33×1012 Jones under 325 nm UV light irradiation.While the rise and the fall time are decreased 1.3 times and 6.8 times under 520 nm visible light irradiation at 0 V bias.The high photocurrent gain is derived from that the oscillating high-energy hot electrons in Au nanoparticles spontaneously inject into the ZnTe conduction band to involve the photodetection process.This work presents an effective route to prepare high-performance self-power photodetector and provides a promising blueprint to realize different functional photoelectronic devices based on core/shell nanostructure.
基金supported by the National Basic Research Program of China ("973" Program, No. 2012CB720302)the National Key Research and Development Program of China (No 2016YFF0102503)
文摘In this study, we designed and synthesized a novel battery-type electrode featuring three-dimensional(3D) hierarchical ZnO@Ni_xCo_(1-x)(OH)_y core/shell nanowire/nanosheet arrays arranged on Nifoam substrate via a two-step protocol including a wet chemical process followed by electro-deposition. We then characterized its composition, structure and surface morphology by X-ray diff raction, energy-dispersive X-ray spectrometry(EDS), X-ray photoelectron spectroscopy, scanning electron microscopy(SEM), transmission electron microscopy, EDS elemental mapping. Our electrochemical measurements show that the ZnO@Ni_(0.67)Co_(0.33)(OH)_y electrode material exhibited a noticeably high specific capacity of as much as 255(mA ·h)/g at 1 A/g. Additionally, it demonstrated a superior rate capability, as well as an excellent cycling stability with 81.6% capacity retention over 2000 cycles at 5 A/g. This sample delivered a high energy density of 64 W·h/kg and a power density of 250 W/kg at a current density of 1 A/g. With such remarkable electrochemical properties, we expect the 3D hierarchical hybrid electrode material presented in this work to have promising applications for the next generation of energy storage systems.
文摘More and more out of core problems that involve solving large amounts of data are researched by scientists. The computational grid provides a wide and scalable environment for those large scale computations. A new method supporting out of core computations on grids is presented in this paper. The framework and the data storage strategy are described, based on which an easy and efficient out of core programming interface is provided for the programmers.