Plants posses a complex co-regulatory network which helps them to elicit a response under diverse adverse conditions. We used an in silico approach to identify the genes with both DRE and ABRE motifs in their promoter...Plants posses a complex co-regulatory network which helps them to elicit a response under diverse adverse conditions. We used an in silico approach to identify the genes with both DRE and ABRE motifs in their promoter regions in Arabidopsis thaliana. Our results showed that Arabidopsis contains a set of 2,052 genes with ABRE and DRE motifs in their promoter regions. Approximately 72~o or more of the total predicted 2,052 genes had a gap distance of less than 40o bp between DRE and ABRE motifs. For positional orientation of the DRE and ABRE motifs, we found that the DR form (one in direct and the other one in reverse orientation) was more prevalent than other forms. These predicted 2,o52 genes include 155 transcription factors. Using microarray data from The Arabidopsis Information Resource (TAIR) database, we present 44 transcription factors out of 155 which are upregulated by more than twofold in response to osmotic stress and ABA treatment. Fifty-one transcripts from the one predicted above were validated using semiquantitative expression analysis to support the microarray data in TAIR. Taken together, we report a set of genes containing both DRE and ABRE motifs in their promoter regions in A. thaliana, which can be useful to understand the role of ABA under osmotic stress condition.展开更多
Aims: Two genetically distinct clones of Phragmites australis were used to investigate the immediate response induced by osmotic stress. The study aimed at elucidating if the response time, the inhibition rate and the...Aims: Two genetically distinct clones of Phragmites australis were used to investigate the immediate response induced by osmotic stress. The study aimed at elucidating if the response time, the inhibition rate and the recovery from salinity stress vary between these two genotypes. The experimental work was conducted at the laboratory of the Institute of Bioscience, Aarhus University, Denmark. Methods: The light-saturated photosynthetic rate (Pmax), stomata conductance (gs) and transpiration rate (E) were measured over different periods of salt exposure (15, 70 and 240 minutes) and at different salt concentrations (20 and 40 parts per thousand salinity). Important findings: The osmotic stress induced stomata closure and reduction of Pmax and E for both clones. The clone-specific responses as measured through physiological parameters were negatively correlated with exposure time and salt concentration. During the 4-hour exposure at 20 ppt, the two clones were inhibited at different rates. The salt-sensitive Land-type showed an immediate reduction of Pmax, gs and E. No recovery was observed after removing the salt solution. At the same salt concentration, the reduction of Pmax gs and E of the Greeny-type was lower and immediate recovery was observed when the root zone was rinsed. Both clones were irreversibly inhibited after 4 hours of exposure to 40 ppt. Recovery was primarily related to exposure time, as Pmax, gs and E rates of both clones recovered completely after fresh-water rinsing in the 15-minute experiment. The Greeny-type also recovered after the 70-minute exposure, but not the Land-type.展开更多
基金the INSA young scientist projectBSC-0109 CSIR-Network project for financial support
文摘Plants posses a complex co-regulatory network which helps them to elicit a response under diverse adverse conditions. We used an in silico approach to identify the genes with both DRE and ABRE motifs in their promoter regions in Arabidopsis thaliana. Our results showed that Arabidopsis contains a set of 2,052 genes with ABRE and DRE motifs in their promoter regions. Approximately 72~o or more of the total predicted 2,052 genes had a gap distance of less than 40o bp between DRE and ABRE motifs. For positional orientation of the DRE and ABRE motifs, we found that the DR form (one in direct and the other one in reverse orientation) was more prevalent than other forms. These predicted 2,o52 genes include 155 transcription factors. Using microarray data from The Arabidopsis Information Resource (TAIR) database, we present 44 transcription factors out of 155 which are upregulated by more than twofold in response to osmotic stress and ABA treatment. Fifty-one transcripts from the one predicted above were validated using semiquantitative expression analysis to support the microarray data in TAIR. Taken together, we report a set of genes containing both DRE and ABRE motifs in their promoter regions in A. thaliana, which can be useful to understand the role of ABA under osmotic stress condition.
文摘Aims: Two genetically distinct clones of Phragmites australis were used to investigate the immediate response induced by osmotic stress. The study aimed at elucidating if the response time, the inhibition rate and the recovery from salinity stress vary between these two genotypes. The experimental work was conducted at the laboratory of the Institute of Bioscience, Aarhus University, Denmark. Methods: The light-saturated photosynthetic rate (Pmax), stomata conductance (gs) and transpiration rate (E) were measured over different periods of salt exposure (15, 70 and 240 minutes) and at different salt concentrations (20 and 40 parts per thousand salinity). Important findings: The osmotic stress induced stomata closure and reduction of Pmax and E for both clones. The clone-specific responses as measured through physiological parameters were negatively correlated with exposure time and salt concentration. During the 4-hour exposure at 20 ppt, the two clones were inhibited at different rates. The salt-sensitive Land-type showed an immediate reduction of Pmax, gs and E. No recovery was observed after removing the salt solution. At the same salt concentration, the reduction of Pmax gs and E of the Greeny-type was lower and immediate recovery was observed when the root zone was rinsed. Both clones were irreversibly inhibited after 4 hours of exposure to 40 ppt. Recovery was primarily related to exposure time, as Pmax, gs and E rates of both clones recovered completely after fresh-water rinsing in the 15-minute experiment. The Greeny-type also recovered after the 70-minute exposure, but not the Land-type.