Let Q 2 = [0, 1]2 be the unit square in two dimension Euclidean space ?2. We study the L p boundedness properties of the oscillatory integral operators T α,β defined on the set S(?3) of Schwartz test functions f by ...Let Q 2 = [0, 1]2 be the unit square in two dimension Euclidean space ?2. We study the L p boundedness properties of the oscillatory integral operators T α,β defined on the set S(?3) of Schwartz test functions f by $$ \mathcal{T}_{\alpha ,\beta } f(x,y,z) = \int_{Q^2 } {f(x - t,y - s,z - t^k s^j )e^{ - it^{ - \beta _1 } s^{ - \beta 2} } t^{ - 1 - \alpha _1 } s^{ - 1 - \alpha _2 } dtds} , $$ where β1 > α1 ? 0, β2 > α2 ? 0 and (k, j) ∈ ?2. As applications, we obtain some L p boundedness results of rough singular integral operators on the product spaces.展开更多
The boundedness on Triebel-Lizorkin spaces of oscillatory singular integral operator T in the form e^i|x|^aΩ(x)|x|^-n is studied,where a∈R,a≠0,1 and Ω∈L^1(S^n-1) is homogeneous of degree zero and satisfie...The boundedness on Triebel-Lizorkin spaces of oscillatory singular integral operator T in the form e^i|x|^aΩ(x)|x|^-n is studied,where a∈R,a≠0,1 and Ω∈L^1(S^n-1) is homogeneous of degree zero and satisfies certain cancellation condition. When kernel Ω(x' )∈Llog+L(S^n-1 ), the Fp^a,q(R^n) boundedness of the above operator is obtained. Meanwhile ,when Ω(x) satisfies L^1- Dini condition,the above operator T is bounded on F1^0,1 (R^n).展开更多
In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P...In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P(x,y) is a nontrivial and real-valued polynomial defined on R^n×R^n,Ω(x) is homogeneous of degree zero on R^n, As(x) has derivatives of order ms in ∧βs (0〈βs〈 1), Rms+1 (As;x, y) denotes the (ms+1)-st remainder of the Taylor series of As at x expended about y (s = 1, 2, ..., r), M = ∑s^r =1 ms, the author proves that if 0 〈=β1=∑s^r=1 βs〈1,and Ω∈L^q(S^n-1) for some q 〉 1/(1 -β), then for any p∈(1, ∞), and some appropriate 0 〈β〈 1, TA1,A2,...,Ar, is bounded on L^P(R^n).展开更多
Let n≥2. In this paper, the author establishes the L2 (Rx)-boundedness of some oscillatory singular integrals with variable rough kernels by means of some estimates on hyper geometric functions and confluent hyper ge...Let n≥2. In this paper, the author establishes the L2 (Rx)-boundedness of some oscillatory singular integrals with variable rough kernels by means of some estimates on hyper geometric functions and confluent hyper geometric funtions.展开更多
In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under...In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under various conditions on the phase function, radial and nonradial. Since the L p boundedness of these operators is not complete yet, the theorems extend many known results.展开更多
In this paper, we want to improve our previous results. We prove that some oscillatory strong singular integral operators of non-convolution type with non-polynomial phases are bounded from Herz-type Hardy spaces to H...In this paper, we want to improve our previous results. We prove that some oscillatory strong singular integral operators of non-convolution type with non-polynomial phases are bounded from Herz-type Hardy spaces to Herz spaces and from Hardy spaces associated with the Beurling algebras to the Beurling algebras in higher dimensions.展开更多
We obtain appropriate sharp bounds on Triebel-Lizorkin spaces for rough oscillatory inte- grals with polynomial phase. By using these bounds and using an extrapolation argument we obtain some new and previously known ...We obtain appropriate sharp bounds on Triebel-Lizorkin spaces for rough oscillatory inte- grals with polynomial phase. By using these bounds and using an extrapolation argument we obtain some new and previously known results for oscillatory integrals under very weak size conditions on the kernel functions.展开更多
The oscillatory singular integrals we will consider are T(f)(x)=∫<sub>R</sub><sup>n</sup>e<sup>iπp(x,y)</sup>k(x-y)f(y)dy, (1) where k(x) is a Calderon-Zygmund stand...The oscillatory singular integrals we will consider are T(f)(x)=∫<sub>R</sub><sup>n</sup>e<sup>iπp(x,y)</sup>k(x-y)f(y)dy, (1) where k(x) is a Calderon-Zygmund standard kernel, i. e. k(x)=Ω(x)/|x|<sup>n</sup>, where Ω(x) is a homogeneous function and has enough smoothness on the unit sphere of R<sup>n</sup>, and p(x, y) is an arbitrary real-valued polynomial. The purpose of this note is to prove the following theorem.展开更多
The boundedness on weighted local Hardy spaces h<sup>1,p</sup><sub>w</sub> of the oscillatory singular integral Tf(x)=∫<sub>R</sub><sup>n</sup> e<sup>iQ(x,y)&...The boundedness on weighted local Hardy spaces h<sup>1,p</sup><sub>w</sub> of the oscillatory singular integral Tf(x)=∫<sub>R</sub><sup>n</sup> e<sup>iQ(x,y)</sup>K(x,y)f(y)dy is considered when Q(x,y)=P(x-y)for some real-valued polynomial P with its degree not less than two.Also a sufficient and necessary condition on polynomial Q on R<sup>n</sup> × R<sup>n</sup> such that T maps h<sup>1,p</sup><sub>w</sub> to the weighted integrable function space L<sup>1</sup><sub>w</sub> is found.展开更多
In this paper,the weak(1,1)boundedness of oscillatory singular integral with variable phase P(x)γ(y)for any x,y∈R,Tf(x):=p.v.∫∞-∞eiP(x)γ(y)f(x?y)dy/y is studied,where P is a real monic polynomial on R.
In this paper, the authors prove that some oscillatory singular integral operators of non-convolution type with non-polynomial phases are bounded from the Herz-type Hardy spaces to the Herz spaces and from the Hardy ... In this paper, the authors prove that some oscillatory singular integral operators of non-convolution type with non-polynomial phases are bounded from the Herz-type Hardy spaces to the Herz spaces and from the Hardy spaces associated with the Beurling algebras to the Beurling algebras in higher dimensions, even though it is well-known that these operators are not bounded from the Hardy space H1(Rn) into the Lebesgue spaceL1(Rn).展开更多
The authors considered non-convolution type oscillatory singular integral operators with real-analytic phases. A uniform boundedness from HKp to Hp of such operators is established. The result is false for general C ... The authors considered non-convolution type oscillatory singular integral operators with real-analytic phases. A uniform boundedness from HKp to Hp of such operators is established. The result is false for general C phases.展开更多
In this paper, we study a kind of oscillatory singular integral operator T with Calderon-Zygmund kernel, which had been studied by Ricci and Stein in [6], and extend their result. We get that T is bounded on L^P(R^...In this paper, we study a kind of oscillatory singular integral operator T with Calderon-Zygmund kernel, which had been studied by Ricci and Stein in [6], and extend their result. We get that T is bounded on L^P(R^n)(1〈p〈∞) when -1〈u〈 αd(1/2-|1/p-1/2).展开更多
基金the National Natural Science Foundation of China (Grant Nos. 10571122, 10371046)the Natural Science Foundation of Fujian Province of China (Grant No. Z0511004)
文摘Let Q 2 = [0, 1]2 be the unit square in two dimension Euclidean space ?2. We study the L p boundedness properties of the oscillatory integral operators T α,β defined on the set S(?3) of Schwartz test functions f by $$ \mathcal{T}_{\alpha ,\beta } f(x,y,z) = \int_{Q^2 } {f(x - t,y - s,z - t^k s^j )e^{ - it^{ - \beta _1 } s^{ - \beta 2} } t^{ - 1 - \alpha _1 } s^{ - 1 - \alpha _2 } dtds} , $$ where β1 > α1 ? 0, β2 > α2 ? 0 and (k, j) ∈ ?2. As applications, we obtain some L p boundedness results of rough singular integral operators on the product spaces.
文摘The boundedness on Triebel-Lizorkin spaces of oscillatory singular integral operator T in the form e^i|x|^aΩ(x)|x|^-n is studied,where a∈R,a≠0,1 and Ω∈L^1(S^n-1) is homogeneous of degree zero and satisfies certain cancellation condition. When kernel Ω(x' )∈Llog+L(S^n-1 ), the Fp^a,q(R^n) boundedness of the above operator is obtained. Meanwhile ,when Ω(x) satisfies L^1- Dini condition,the above operator T is bounded on F1^0,1 (R^n).
文摘In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P(x,y) is a nontrivial and real-valued polynomial defined on R^n×R^n,Ω(x) is homogeneous of degree zero on R^n, As(x) has derivatives of order ms in ∧βs (0〈βs〈 1), Rms+1 (As;x, y) denotes the (ms+1)-st remainder of the Taylor series of As at x expended about y (s = 1, 2, ..., r), M = ∑s^r =1 ms, the author proves that if 0 〈=β1=∑s^r=1 βs〈1,and Ω∈L^q(S^n-1) for some q 〉 1/(1 -β), then for any p∈(1, ∞), and some appropriate 0 〈β〈 1, TA1,A2,...,Ar, is bounded on L^P(R^n).
基金Dachun Yang was supported by the Croucher Foundation Chinese Visitorships 1999-2000 of Hong Kong and me NNSF(19131080)of China
文摘Let n≥2. In this paper, the author establishes the L2 (Rx)-boundedness of some oscillatory singular integrals with variable rough kernels by means of some estimates on hyper geometric functions and confluent hyper geometric funtions.
基金Supported by the National Natural Science Foundation of China (11026104, 11201103, 11226108)
文摘In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under various conditions on the phase function, radial and nonradial. Since the L p boundedness of these operators is not complete yet, the theorems extend many known results.
基金Xu Jingshi is partially supported by the NSF of Hunan,China(01JJY3003)A project supported by Scientific Research Fund of Hunan Provincial Education Department(02C067)
文摘In this paper, we want to improve our previous results. We prove that some oscillatory strong singular integral operators of non-convolution type with non-polynomial phases are bounded from Herz-type Hardy spaces to Herz spaces and from Hardy spaces associated with the Beurling algebras to the Beurling algebras in higher dimensions.
文摘We obtain appropriate sharp bounds on Triebel-Lizorkin spaces for rough oscillatory inte- grals with polynomial phase. By using these bounds and using an extrapolation argument we obtain some new and previously known results for oscillatory integrals under very weak size conditions on the kernel functions.
基金the National Natural Science Foundation of China and the Foundation of Zhongshan University Advanced Research Centre.
文摘The oscillatory singular integrals we will consider are T(f)(x)=∫<sub>R</sub><sup>n</sup>e<sup>iπp(x,y)</sup>k(x-y)f(y)dy, (1) where k(x) is a Calderon-Zygmund standard kernel, i. e. k(x)=Ω(x)/|x|<sup>n</sup>, where Ω(x) is a homogeneous function and has enough smoothness on the unit sphere of R<sup>n</sup>, and p(x, y) is an arbitrary real-valued polynomial. The purpose of this note is to prove the following theorem.
基金This author is partially supported by the National Science Foundation of ChinaZhejiang Provincial Sciences Foundation of China
文摘The boundedness on weighted local Hardy spaces h<sup>1,p</sup><sub>w</sub> of the oscillatory singular integral Tf(x)=∫<sub>R</sub><sup>n</sup> e<sup>iQ(x,y)</sup>K(x,y)f(y)dy is considered when Q(x,y)=P(x-y)for some real-valued polynomial P with its degree not less than two.Also a sufficient and necessary condition on polynomial Q on R<sup>n</sup> × R<sup>n</sup> such that T maps h<sup>1,p</sup><sub>w</sub> to the weighted integrable function space L<sup>1</sup><sub>w</sub> is found.
文摘In this paper,the weak(1,1)boundedness of oscillatory singular integral with variable phase P(x)γ(y)for any x,y∈R,Tf(x):=p.v.∫∞-∞eiP(x)γ(y)f(x?y)dy/y is studied,where P is a real monic polynomial on R.
基金the National Natural Sciences Foundation of China (No.19131080) and the SEDF of China.
文摘 In this paper, the authors prove that some oscillatory singular integral operators of non-convolution type with non-polynomial phases are bounded from the Herz-type Hardy spaces to the Herz spaces and from the Hardy spaces associated with the Beurling algebras to the Beurling algebras in higher dimensions, even though it is well-known that these operators are not bounded from the Hardy space H1(Rn) into the Lebesgue spaceL1(Rn).
文摘 The authors considered non-convolution type oscillatory singular integral operators with real-analytic phases. A uniform boundedness from HKp to Hp of such operators is established. The result is false for general C phases.
文摘In this paper, we study a kind of oscillatory singular integral operator T with Calderon-Zygmund kernel, which had been studied by Ricci and Stein in [6], and extend their result. We get that T is bounded on L^P(R^n)(1〈p〈∞) when -1〈u〈 αd(1/2-|1/p-1/2).