利用虚拟激励法对随机结构正交展开理论进行扩展,并在Ritz向量子空间中对扩阶系统方程进行动力聚缩,提出了一类可以快速高效地进行线性随机结构复合随机振动分析的计算方法.算例分析表明,该法可以方便地分析随机结构在平稳或非平稳随...利用虚拟激励法对随机结构正交展开理论进行扩展,并在Ritz向量子空间中对扩阶系统方程进行动力聚缩,提出了一类可以快速高效地进行线性随机结构复合随机振动分析的计算方法.算例分析表明,该法可以方便地分析随机结构在平稳或非平稳随机激励下的复合随机振动问题,且分析结果与 Monte Carlo模拟分析结果符合良好;与均值参数确定性结构传统随机振动分析计算结果相比,随机结构在相同随机激励下响应自谱密度曲线具有峰值降低、谱宽增大的特点.展开更多
This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochas...This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochastic process and then a correlated matrix decomposition technique, which transforms a correlated random vector into a vector of standard uncorrelated random variables, is used to complete a double orthogonal decomposition of the stochastic processes. Considering the relationship between the Hartley transform and Fourier transform of a real-valued function, it is suggested that the first orthogonal expansion in the above process is carried out using the Hartley basis function instead of the trigonometric basis function in practical applications. The seismic ground motion is investigated using the above method. In order to capture the main probabilistic characteristics of the seismic ground motion, it is proposed to directly carry out the orthogonal expansion of the seismic displacements. The case study shows that the proposed method is feasible to represent the seismic ground motion with only a few random variables. In the second part of the paper, the probability density evolution method (PDEM) is employed to study the stochastic response of nonlinear structures subjected to earthquake excitations. In the PDEM, a completely uncoupled one-dimensional partial differential equation, the generalized density evolution equation, plays a central role in governing the stochastic seismic responses of the nonlinear structure. The solution to this equation will yield the instantaneous probability density function of the responses. Computational algorithms to solve the probability density evolution equation are described. An example, which deals with a nonlinear frame structure subjected to stochastic ground motions, is illustrated to validate the above approach.展开更多
This paper is to study the convergence and superconvergence of rectangular finite elements under anisotropic meshes. By using of the orthogonal expansion method, an anisotropic Lagrange interpolation is presented. The...This paper is to study the convergence and superconvergence of rectangular finite elements under anisotropic meshes. By using of the orthogonal expansion method, an anisotropic Lagrange interpolation is presented. The family of Lagrange rectangular elements with all the possible shape function spaces are considered, which cover the Intermediate families, Tensor-product families and Serendipity families. It is shown that the anisotropic interpolation error estimates hold for any order Sobolev norm. We extend the convergence and superconvergence result of rectangular finite elements to arbitrary rectangular meshes in a unified way.展开更多
文摘利用虚拟激励法对随机结构正交展开理论进行扩展,并在Ritz向量子空间中对扩阶系统方程进行动力聚缩,提出了一类可以快速高效地进行线性随机结构复合随机振动分析的计算方法.算例分析表明,该法可以方便地分析随机结构在平稳或非平稳随机激励下的复合随机振动问题,且分析结果与 Monte Carlo模拟分析结果符合良好;与均值参数确定性结构传统随机振动分析计算结果相比,随机结构在相同随机激励下响应自谱密度曲线具有峰值降低、谱宽增大的特点.
基金National Natural Science Foundation of China for Innovative Research Groups Under Grant No.50321803 & 50621062National Natural Science Foundation of China Under Grant No.50808113 & 10872148
文摘This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochastic process and then a correlated matrix decomposition technique, which transforms a correlated random vector into a vector of standard uncorrelated random variables, is used to complete a double orthogonal decomposition of the stochastic processes. Considering the relationship between the Hartley transform and Fourier transform of a real-valued function, it is suggested that the first orthogonal expansion in the above process is carried out using the Hartley basis function instead of the trigonometric basis function in practical applications. The seismic ground motion is investigated using the above method. In order to capture the main probabilistic characteristics of the seismic ground motion, it is proposed to directly carry out the orthogonal expansion of the seismic displacements. The case study shows that the proposed method is feasible to represent the seismic ground motion with only a few random variables. In the second part of the paper, the probability density evolution method (PDEM) is employed to study the stochastic response of nonlinear structures subjected to earthquake excitations. In the PDEM, a completely uncoupled one-dimensional partial differential equation, the generalized density evolution equation, plays a central role in governing the stochastic seismic responses of the nonlinear structure. The solution to this equation will yield the instantaneous probability density function of the responses. Computational algorithms to solve the probability density evolution equation are described. An example, which deals with a nonlinear frame structure subjected to stochastic ground motions, is illustrated to validate the above approach.
文摘This paper is to study the convergence and superconvergence of rectangular finite elements under anisotropic meshes. By using of the orthogonal expansion method, an anisotropic Lagrange interpolation is presented. The family of Lagrange rectangular elements with all the possible shape function spaces are considered, which cover the Intermediate families, Tensor-product families and Serendipity families. It is shown that the anisotropic interpolation error estimates hold for any order Sobolev norm. We extend the convergence and superconvergence result of rectangular finite elements to arbitrary rectangular meshes in a unified way.