The major tectonic zone that passes through the border regions of the Anhui, Zhejiang, and Jiangxi Provinces in southeast China has been commonly referred to as the Wan-Zhe-Gan fault zone. Geologically, this zone cons...The major tectonic zone that passes through the border regions of the Anhui, Zhejiang, and Jiangxi Provinces in southeast China has been commonly referred to as the Wan-Zhe-Gan fault zone. Geologically, this zone consists of several regional fault belts of various ages and orientations. We have categorized the faults into four age groups based on field investigations. The Neoproterozoic faults are northeast striking. They start from the northeast Jiangxi Province and extend northeastward to Fuchuan in Anhui Province, the same location of the northeast Jiangxi-Fuchuan ophiolite belt. The faults probably acted during the Neoproterozoic as a boundary fault zone of a plate or a block suture with melange along the faults. The nearly east-west- or east-northeast-striking faults are of Silurian ages (40Ar/39Ar age 429 Ma). This group includes the Qimen-Shexian fault and the Jiangwang-Jiekou ductile shear belt. They represent a major tectonic boundary in the basement because the two sides of the fault have clear dissimilarities. The third group of faults is north-northeast striking, having formed since the early-middle Triassic with 40Ar/39Ar ages of 230-254 Ma. They form a fault belt starting from Yiyang in northern Jiangxi and connect with the Wucheng as well as the Ningguo-Jixi faults. This fault belt is a key fault-magmatic belt controlling the formation of Jurassic-Cretaceous red basins, ore distribution, magmatic activity, and mineralization. When it reactivated during the late Cretaceous, the belt behaved as a series of reverse faults from southeast to northwest and composed the fourth fault group. Therefore, classifying the Wan-Zhe-Gan fault zone into four fault groups will help in the analysis of the tectonic evolution of the eastern segment of the Jiangnan orogen since the Neoproterozoic era.展开更多
Advanced civil aero-engines tend to adopt lean burn combustors to meet emission requirements.The exit of a lean burn combustor experiences highly non-uniformities in both temperature(Hot Streak,HS)and flow(swirl).This...Advanced civil aero-engines tend to adopt lean burn combustors to meet emission requirements.The exit of a lean burn combustor experiences highly non-uniformities in both temperature(Hot Streak,HS)and flow(swirl).This paper presents a numerical investigation on the behaviors of a High-Pressure(HP)turbine under a combined effect of swirl and hot streak.The investigation was conducted on a GE-E3 HP turbine with unsteady numerical simulations,which considered the realistic clocking position of the HP Nozzle Guide Vane(NGV)relative to the combustor.The influences of swirl orientations on the HS migration and thermal performances on the blade surface were examined.Results indicate that,inside the NGV passage,the swirl’s induced incidence angle effect dominates the HS radial migration.The transversal movement of HS follows the cross flow and thus makes itself approach the Suction Side(SS)and keep away from the Pressure Side(PS)as passing through the NGV,so that HS near the SS is more influenced by the incidence angle effect than that near the PS.As for the heat transfer,swirl affects the Heat Transfer Coefficient(HTC)on the NGV’s PS and SS mainly through the incidence angle effect.Different from the NGV,the inlet swirl and HS have limited effect on the HTC on the rotor blade’s PS,while on the rotor blade’s SS,the original vortex system dominates;therefore,the inlet non-uniformities merely enhance the HTC on the SS rather than alter its distribution characteristics.展开更多
基金the Open Research Program of the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Grant No GPMR 200836)the National Natural Science Foundation of China(Grant No90814006+1 种基金40772134) for financial supportthe project "Research on the W-Mo Polymetallic Regularity in Dongyuan,Qimen and Xiaoyao,Jixi(Grant No2009-20)"
文摘The major tectonic zone that passes through the border regions of the Anhui, Zhejiang, and Jiangxi Provinces in southeast China has been commonly referred to as the Wan-Zhe-Gan fault zone. Geologically, this zone consists of several regional fault belts of various ages and orientations. We have categorized the faults into four age groups based on field investigations. The Neoproterozoic faults are northeast striking. They start from the northeast Jiangxi Province and extend northeastward to Fuchuan in Anhui Province, the same location of the northeast Jiangxi-Fuchuan ophiolite belt. The faults probably acted during the Neoproterozoic as a boundary fault zone of a plate or a block suture with melange along the faults. The nearly east-west- or east-northeast-striking faults are of Silurian ages (40Ar/39Ar age 429 Ma). This group includes the Qimen-Shexian fault and the Jiangwang-Jiekou ductile shear belt. They represent a major tectonic boundary in the basement because the two sides of the fault have clear dissimilarities. The third group of faults is north-northeast striking, having formed since the early-middle Triassic with 40Ar/39Ar ages of 230-254 Ma. They form a fault belt starting from Yiyang in northern Jiangxi and connect with the Wucheng as well as the Ningguo-Jixi faults. This fault belt is a key fault-magmatic belt controlling the formation of Jurassic-Cretaceous red basins, ore distribution, magmatic activity, and mineralization. When it reactivated during the late Cretaceous, the belt behaved as a series of reverse faults from southeast to northwest and composed the fourth fault group. Therefore, classifying the Wan-Zhe-Gan fault zone into four fault groups will help in the analysis of the tectonic evolution of the eastern segment of the Jiangnan orogen since the Neoproterozoic era.
基金funded by the National Science Foundation of China(No.61890923)the National Science and Technology Major Project,China(No.J2019-VIII-0001-0162).
文摘Advanced civil aero-engines tend to adopt lean burn combustors to meet emission requirements.The exit of a lean burn combustor experiences highly non-uniformities in both temperature(Hot Streak,HS)and flow(swirl).This paper presents a numerical investigation on the behaviors of a High-Pressure(HP)turbine under a combined effect of swirl and hot streak.The investigation was conducted on a GE-E3 HP turbine with unsteady numerical simulations,which considered the realistic clocking position of the HP Nozzle Guide Vane(NGV)relative to the combustor.The influences of swirl orientations on the HS migration and thermal performances on the blade surface were examined.Results indicate that,inside the NGV passage,the swirl’s induced incidence angle effect dominates the HS radial migration.The transversal movement of HS follows the cross flow and thus makes itself approach the Suction Side(SS)and keep away from the Pressure Side(PS)as passing through the NGV,so that HS near the SS is more influenced by the incidence angle effect than that near the PS.As for the heat transfer,swirl affects the Heat Transfer Coefficient(HTC)on the NGV’s PS and SS mainly through the incidence angle effect.Different from the NGV,the inlet swirl and HS have limited effect on the HTC on the rotor blade’s PS,while on the rotor blade’s SS,the original vortex system dominates;therefore,the inlet non-uniformities merely enhance the HTC on the SS rather than alter its distribution characteristics.