Five 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based conjugated copolymers with controlled molecular weight were synthesized to explore their optical, energy level and photovoltaic properties. By tuning the pos...Five 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based conjugated copolymers with controlled molecular weight were synthesized to explore their optical, energy level and photovoltaic properties. By tuning the positions of hexyl side chains on DTBT unit, the DTBT- fluorene copolymers exhibited very different aggregation properties, leading to 60 nm bathochromic shift in their absorptions and the corresponding power conversion efficiencies (PCEs) value of photovoltaic cells varied from 0.38%, 0.69% to 2.47%. Different copolymerization units, fluorene, earbazole and phenothiazine were also investigated. The polymer based on phenothiazine exhib- ited lower PCE value due to much lower molecular weight owing to its poor solubility, although phenothiazine units were expected to be a better electron donor. Compared with the fluorene-based polymer, the carbazole-DTBT copolymer showed higher short circuit current density (Jsc) and PCE value due to its better intermolecular stacking,展开更多
Control of blend morphology at multi-scale is critical for optimizing the power conversion efficiency(PCE)of plastic solar cells.To better understand the physics of photoactive layer in the organic photovoltaic device...Control of blend morphology at multi-scale is critical for optimizing the power conversion efficiency(PCE)of plastic solar cells.To better understand the physics of photoactive layer in the organic photovoltaic devices,it is necessary to gain understanding of morphology and the corresponding electronic property.Herein we report the correlation between nanoscale structural,electric properties of bulk heterojunction(BHJ)solar cells and the annealing-induced PCE change.We demonstrate that the PCE of BHJ solar cells are dramatically improved(from1.3%to 4.6%)by thermal annealing,which results from P3HT crystalline stacking and the PCBM aggregation for interpenetrated network.The similar trend for annealinginduced photovoltage and PCE evolution present as an initial increase followed by a decrease with the annealing time and temperature.The surface roughness increase slowly and then abruptly after the same inflection points observed for photovoltage and PCE.The phase images in electric force microscopy indicate the optimized P3HT and PCBM crystallization for interpenetrating network formation considering the spectroscopic results as well.From the correlation between surface photovoltage,blend morphology,and PCE,we propose a model to illustrate the film structure and its evolution under different annealing conditions.This work would benefit the better design and optimization of the morphology and local electric properties of solar cell active layers for improved PCE.展开更多
基金Acknowledgements Financial support by the National Natural Science Foundation of China (Grant Nos. 51073063 and 20904057) and Open Project of State Key Laboralory for Supramolecular Structure and Materials (No. SKLSSM201129) of Jilin university arc gratefully acknowledged. J. Zhang thanks the support by 100 Talents Programme of the Chinese Academy of Science.
文摘Five 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based conjugated copolymers with controlled molecular weight were synthesized to explore their optical, energy level and photovoltaic properties. By tuning the positions of hexyl side chains on DTBT unit, the DTBT- fluorene copolymers exhibited very different aggregation properties, leading to 60 nm bathochromic shift in their absorptions and the corresponding power conversion efficiencies (PCEs) value of photovoltaic cells varied from 0.38%, 0.69% to 2.47%. Different copolymerization units, fluorene, earbazole and phenothiazine were also investigated. The polymer based on phenothiazine exhib- ited lower PCE value due to much lower molecular weight owing to its poor solubility, although phenothiazine units were expected to be a better electron donor. Compared with the fluorene-based polymer, the carbazole-DTBT copolymer showed higher short circuit current density (Jsc) and PCE value due to its better intermolecular stacking,
基金supported by the National Basic Research Program of China(2011CB932800 and 2013CB934200)Sino-British Collaboration Program(2010DFA64680)+1 种基金National Natural Science Foundation of China(20973043)Chinese Academy of Sciences(KGCX2-YW-375-3)
文摘Control of blend morphology at multi-scale is critical for optimizing the power conversion efficiency(PCE)of plastic solar cells.To better understand the physics of photoactive layer in the organic photovoltaic devices,it is necessary to gain understanding of morphology and the corresponding electronic property.Herein we report the correlation between nanoscale structural,electric properties of bulk heterojunction(BHJ)solar cells and the annealing-induced PCE change.We demonstrate that the PCE of BHJ solar cells are dramatically improved(from1.3%to 4.6%)by thermal annealing,which results from P3HT crystalline stacking and the PCBM aggregation for interpenetrated network.The similar trend for annealinginduced photovoltage and PCE evolution present as an initial increase followed by a decrease with the annealing time and temperature.The surface roughness increase slowly and then abruptly after the same inflection points observed for photovoltage and PCE.The phase images in electric force microscopy indicate the optimized P3HT and PCBM crystallization for interpenetrating network formation considering the spectroscopic results as well.From the correlation between surface photovoltage,blend morphology,and PCE,we propose a model to illustrate the film structure and its evolution under different annealing conditions.This work would benefit the better design and optimization of the morphology and local electric properties of solar cell active layers for improved PCE.