Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the indi...Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants( k ) near 4 0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric(ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra low k from 1 80 to 2 87, and good to high modulus, 1 5 to 5 5 GPa. Structure property influences on porosity, dielectric constant and modulus will be discussed.展开更多
The title organic inorganic hybrid composite has been prepared by a sol gel method from allyl alcohol and tetraethoxysilicane. The IR spectra, thermal property and impact strength of the composite are reported.
Blood purification refers to the extra corporeal therapies of removing potentially toxic substances, in which blood is circulated through an adsorption system loading separation materials. High-efficient inexpensive s...Blood purification refers to the extra corporeal therapies of removing potentially toxic substances, in which blood is circulated through an adsorption system loading separation materials. High-efficient inexpensive separation materials are critical to success. In this review, separation materials such as polymers and nanomaterials are summarized and compared. Combining the advantages of the adsorptive membranes and nanomaterials, organic–inorganic hybrid/blend membranes have been developed explosively. These hybrid/blend membranes have both the characteristics of high permeability, easy fabrication, good biocompatibility of adsorptive membranes, and characteristics of fast adsorption rate and high adsorption capacity of nanomaterials. The preparation and modification methodology of the separation materials is reviewed. For affinity separation materials, the relationship of ligand chemistry, ligand density and pores of the matrix is discussed. This paper also summarizes some interesting applications in separation materials for removal of bilirubin, endotoxin, toxic metal ions, cytokine, etc.展开更多
文摘Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants( k ) near 4 0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric(ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra low k from 1 80 to 2 87, and good to high modulus, 1 5 to 5 5 GPa. Structure property influences on porosity, dielectric constant and modulus will be discussed.
文摘The title organic inorganic hybrid composite has been prepared by a sol gel method from allyl alcohol and tetraethoxysilicane. The IR spectra, thermal property and impact strength of the composite are reported.
基金Supported by the National Natural Science Foundation of China(No.21606120)National Undergraducate Training Program for Innovation and Entrepreneurship(Nos.201710148000016 and 201810148080)
文摘Blood purification refers to the extra corporeal therapies of removing potentially toxic substances, in which blood is circulated through an adsorption system loading separation materials. High-efficient inexpensive separation materials are critical to success. In this review, separation materials such as polymers and nanomaterials are summarized and compared. Combining the advantages of the adsorptive membranes and nanomaterials, organic–inorganic hybrid/blend membranes have been developed explosively. These hybrid/blend membranes have both the characteristics of high permeability, easy fabrication, good biocompatibility of adsorptive membranes, and characteristics of fast adsorption rate and high adsorption capacity of nanomaterials. The preparation and modification methodology of the separation materials is reviewed. For affinity separation materials, the relationship of ligand chemistry, ligand density and pores of the matrix is discussed. This paper also summarizes some interesting applications in separation materials for removal of bilirubin, endotoxin, toxic metal ions, cytokine, etc.