In order to deal with the global change and to reduce emission of greenhouse gas, a number of countries have strengthened studies on carbon sequestration in cropland. Carbon sequestration in cropland is not only an im...In order to deal with the global change and to reduce emission of greenhouse gas, a number of countries have strengthened studies on carbon sequestration in cropland. Carbon sequestration in cropland is not only an important component for the global carbon stock, but also is the most active part to sequestrate the carbon in soil from atmosphere. In this sense, it is of necessity and significance to strengthen the study on management of carbon sequestration in cropland. Based on the main factors affecting carbon cycle in agro-ecosystems, this paper summarizes the relevant management measures to strengthen the capacity of reducing emission of carbon and increasing the carbon sequestration in cropland, and evaluates the effects of these measures after being implemented at a regional extent.展开更多
Calcareous soil contains organic and inorganic carbon(C) pools,which both contribute to CO2 emission during closed-jar incubation. The mineralization of organic C and dissolution of inorganic C are both related to so...Calcareous soil contains organic and inorganic carbon(C) pools,which both contribute to CO2 emission during closed-jar incubation. The mineralization of organic C and dissolution of inorganic C are both related to soil moisture,but the exact effect of water content on CO2 emission from calcareous soil is unclear. The objective of this experiment was to determine the effect of soil water content(air-dried,30%,70%,and 100% water-holding capacity(WHC)),carbonate type(CaCO3 or MgCO3),and carbonate amount(0.0,1.0%,and 2.0%) on CO2 emission from calcareous soil during closed-jar incubation. Soil CO2 emission increased significantly as the water content increased to 70% WHC,regardless of whether or not the soil was amended with carbonates. Soil CO2 emission remained the same or increased slowly as the soil water content increased from 70% WHC to 100% WHC. When the water content was ≤30% WHC,soil CO2 emission from soil amended with 1.0% inorganic C was greater than that from unamended soil. When the soil water content was 70% or 100% WHC,CO2 emission from CaCO3 amended soil was greater than that from the control. Furthermore,CO2 emission from soil amended with 2.0% CaCO3 was greater than that from soil amended with 1.0% CaCO3. Soil CO2 emission was higher in the MgCO3 amended soil than from the unamended soil. Soil CO2 emission decreased as the MgCO3 content increased. Cumulative CO2 emission was 3-6 times higher from MgCO3 amended soil than from CaCO3 amended soil. There was significant interaction effect between soil moisture and carbonates on CO2 emission. Soil moisture plays an important role in CO2 emission from calcareous soil because it affects both biotic and abiotic processes during the closed-jar incubation.展开更多
基金Supported by National Natural Science Foundation of China(70873118)the Chinese Academy of Sciences (kzcx2-yw-305-2)the national key scientific and technological project(2006BAC08B03,2006BAC08B06,2008BAC43B01)~~
文摘In order to deal with the global change and to reduce emission of greenhouse gas, a number of countries have strengthened studies on carbon sequestration in cropland. Carbon sequestration in cropland is not only an important component for the global carbon stock, but also is the most active part to sequestrate the carbon in soil from atmosphere. In this sense, it is of necessity and significance to strengthen the study on management of carbon sequestration in cropland. Based on the main factors affecting carbon cycle in agro-ecosystems, this paper summarizes the relevant management measures to strengthen the capacity of reducing emission of carbon and increasing the carbon sequestration in cropland, and evaluates the effects of these measures after being implemented at a regional extent.
基金supported by the National Natural Science Foundation of China(40773057)the National Technology R&D Pillar Program in the 12th Five-Year Plan of China(2012BAD15B04)
文摘Calcareous soil contains organic and inorganic carbon(C) pools,which both contribute to CO2 emission during closed-jar incubation. The mineralization of organic C and dissolution of inorganic C are both related to soil moisture,but the exact effect of water content on CO2 emission from calcareous soil is unclear. The objective of this experiment was to determine the effect of soil water content(air-dried,30%,70%,and 100% water-holding capacity(WHC)),carbonate type(CaCO3 or MgCO3),and carbonate amount(0.0,1.0%,and 2.0%) on CO2 emission from calcareous soil during closed-jar incubation. Soil CO2 emission increased significantly as the water content increased to 70% WHC,regardless of whether or not the soil was amended with carbonates. Soil CO2 emission remained the same or increased slowly as the soil water content increased from 70% WHC to 100% WHC. When the water content was ≤30% WHC,soil CO2 emission from soil amended with 1.0% inorganic C was greater than that from unamended soil. When the soil water content was 70% or 100% WHC,CO2 emission from CaCO3 amended soil was greater than that from the control. Furthermore,CO2 emission from soil amended with 2.0% CaCO3 was greater than that from soil amended with 1.0% CaCO3. Soil CO2 emission was higher in the MgCO3 amended soil than from the unamended soil. Soil CO2 emission decreased as the MgCO3 content increased. Cumulative CO2 emission was 3-6 times higher from MgCO3 amended soil than from CaCO3 amended soil. There was significant interaction effect between soil moisture and carbonates on CO2 emission. Soil moisture plays an important role in CO2 emission from calcareous soil because it affects both biotic and abiotic processes during the closed-jar incubation.