Senescence is a highly regulated process that involves the action of a large number of transcription factors. The NAC transcription factor ORE1 (ANAC092) has recently been shown to play a critical role in positively...Senescence is a highly regulated process that involves the action of a large number of transcription factors. The NAC transcription factor ORE1 (ANAC092) has recently been shown to play a critical role in positively controlling senescence in Arabidopsis thaliana; however, no direct target gene through which it exerts its molecular function has been identified previously. Here, we report that BIFUNCTIONAL NUCLEASE1 (BFN1), a well-known senescence-enhanced gene, is directly regulated by ORE1. We detected elevated expression of BFN1 already 2 h after induction of ORE1 in estradiol-inducible ORE1 overexpression lines and 6 h after transfection of Arabidopsis mesophyll cell protoplasts with a 35S:ORE1 construct, ORE1 and BFN1 expression patterns largely overlap, as shown by promoter-reporter gene (GUS) fusions, while BFN1 expression in senescent leaves and the abscission zones of maturing flower organs was virtually absent in ore1 mutant background. In vitro binding site assays revealed a bipartite ORE1 binding site, similar to that of ORS1, a paralog of ORE1. A bipartite ORE1 binding site was identified in the BFN1 promoter; mutating the cis-element within the context of the full-length BFN1 promoter drastically reduced OREl-mediated transactivation capacity in tran- siently transfected Arabidopsis mesophyll cell protoplasts. Furthermore, chromatin immunoprecipitation (CHIP) demon- strates in vivo binding of ORE1 to the BFN1 promoter. We also demonstrate binding of ORE1 in vivo to the promoters of two other senescence-associated genes, namely SAG29/SWEET15 and SINA1, supporting the central role of ORE1 during senescence.展开更多
To address the issues for assessing and prospecting the replaceable resource of crisis mines, a geological ore-controlling field model and a mineralization distribution field model were proposed from the viewpoint of ...To address the issues for assessing and prospecting the replaceable resource of crisis mines, a geological ore-controlling field model and a mineralization distribution field model were proposed from the viewpoint of field analysis. By dint of solving the field models through transferring the continuous models into the discrete ones, the relationship between the geological ore-controlling effect field and the mineralization distribution field was analyzed, and the quantitative and located parameters were extracted for describing the geological factors controlling mineralization enrichment. The method was applied to the 3-dimensional localization and quantitative prediction for concealed ore bodies in the depths and margins of the Daehang mine in Guangxi, China, and the 3-dimensional distribution models of mineralization indexes and ore-controlling factors such as magmatic rocks, strata, faults, lithology and folds were built. With the methods of statistical analysis and the non-linear programming, the quantitative index set of the geological ore-controlling factors was obtained. In addition, the stereoscopic located and quantitative prediction models were set up by exploring the relationship between the mineralization indexes and the geological ore-controlling factors. So far, some concealed ore bodies with the resource volume of a medium-sized mineral deposit are found in the deep parts of the Dachang Mine by means of the deep prospecting drills following the prediction results, from which the effectiveness of the predication models and results is proved.展开更多
To obtain the appropriate conditions for eliminating Fe3+from NiSO4 solution, the digestion solution of the clinker was used as raw material, which was obtained from roasting the nickel oxide ore with (NH4)2SO4. Th...To obtain the appropriate conditions for eliminating Fe3+from NiSO4 solution, the digestion solution of the clinker was used as raw material, which was obtained from roasting the nickel oxide ore with (NH4)2SO4. The ammonium jarosite was successfully synthesized from the solution with analytic grade NH4HCO3. The effects of reaction temperature, reaction time, end pH value of reaction on the removal rate of iron were investigated, and the effect of the initial concentration of Fe3+was also discussed. All of those factors had significant effects on the removal rate of Fe3+, among which the reaction temperature was the most prominent. The appropriate reaction conditions were concluded as follows: reaction temperature 95 ℃ reaction time 3.5 h, end pH value of reaction 2.5 at initial concentration of Fe3+19.36 g/L. The physical aspect of (NH4)2Fe6(SO4)4(OH)12 was cluster figure composed of sheet or prismatic particles with smooth surface.展开更多
In order to clarify the solvent extraction and separation behaviors of rare earths and impurity of Al during the extraction and enrichment of low-concentration leach solution of ion-adsorption rare earth ore,the extra...In order to clarify the solvent extraction and separation behaviors of rare earths and impurity of Al during the extraction and enrichment of low-concentration leach solution of ion-adsorption rare earth ore,the extraction mechanism and separation behaviors of Nd^(3+)and Al^(3+)in the Nd_(2)(SO_(4))_(3)-AI_(2)(SO_(4))_(3) mixed solution using P507 were studied in this work.The extraction of Nd^(3+)and Al^(3+)follows the cation exchange mechanism.With the increase of the equilibrium pH,β_(Nd/Al) in the extraction of the Nd_(2)(SO_(4))_(3)-Al_(2)(SO_(4))_(3) mixed solution using P507 is always higher than that in the extraction of single Nd_(2)(SO_(4))_(3) and Al_(2)(SO_(4))_(3) solutions.It can be attributed to the fact that the extraction of Nd^(3+)using P507 is much faster than that of Al^(3+),and Al^(3+)is more prone to be hydrolyzed at lower pH.β_(Nd/Al) in the extraction of the Nd_(2)(SO_(4))_(3)-Al_(2)(SO_(4))_(3) mixed solution decreases gradually with the increase of mixing time within the equilibrium pH range of 1.5-1.9.The extraction of Nd^(3+)using P507 is much faster than that of Al^(3+),but the stability of Al^(3+)-Ioaded organic phase is better than that of Nd^(3+)-loaded organic phase,thus Nd^(3+)in the Nd^(3+)-loaded organic phase is gradually replaced by Al^(3+)in the aqueous phase with the increase of mixing time.展开更多
文摘Senescence is a highly regulated process that involves the action of a large number of transcription factors. The NAC transcription factor ORE1 (ANAC092) has recently been shown to play a critical role in positively controlling senescence in Arabidopsis thaliana; however, no direct target gene through which it exerts its molecular function has been identified previously. Here, we report that BIFUNCTIONAL NUCLEASE1 (BFN1), a well-known senescence-enhanced gene, is directly regulated by ORE1. We detected elevated expression of BFN1 already 2 h after induction of ORE1 in estradiol-inducible ORE1 overexpression lines and 6 h after transfection of Arabidopsis mesophyll cell protoplasts with a 35S:ORE1 construct, ORE1 and BFN1 expression patterns largely overlap, as shown by promoter-reporter gene (GUS) fusions, while BFN1 expression in senescent leaves and the abscission zones of maturing flower organs was virtually absent in ore1 mutant background. In vitro binding site assays revealed a bipartite ORE1 binding site, similar to that of ORS1, a paralog of ORE1. A bipartite ORE1 binding site was identified in the BFN1 promoter; mutating the cis-element within the context of the full-length BFN1 promoter drastically reduced OREl-mediated transactivation capacity in tran- siently transfected Arabidopsis mesophyll cell protoplasts. Furthermore, chromatin immunoprecipitation (CHIP) demon- strates in vivo binding of ORE1 to the BFN1 promoter. We also demonstrate binding of ORE1 in vivo to the promoters of two other senescence-associated genes, namely SAG29/SWEET15 and SINA1, supporting the central role of ORE1 during senescence.
基金Project(2007CB416608) supported by the National Basic Research Program of ChinaProject(2006BAB01B07) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period
文摘To address the issues for assessing and prospecting the replaceable resource of crisis mines, a geological ore-controlling field model and a mineralization distribution field model were proposed from the viewpoint of field analysis. By dint of solving the field models through transferring the continuous models into the discrete ones, the relationship between the geological ore-controlling effect field and the mineralization distribution field was analyzed, and the quantitative and located parameters were extracted for describing the geological factors controlling mineralization enrichment. The method was applied to the 3-dimensional localization and quantitative prediction for concealed ore bodies in the depths and margins of the Daehang mine in Guangxi, China, and the 3-dimensional distribution models of mineralization indexes and ore-controlling factors such as magmatic rocks, strata, faults, lithology and folds were built. With the methods of statistical analysis and the non-linear programming, the quantitative index set of the geological ore-controlling factors was obtained. In addition, the stereoscopic located and quantitative prediction models were set up by exploring the relationship between the mineralization indexes and the geological ore-controlling factors. So far, some concealed ore bodies with the resource volume of a medium-sized mineral deposit are found in the deep parts of the Dachang Mine by means of the deep prospecting drills following the prediction results, from which the effectiveness of the predication models and results is proved.
基金Project(51204054)supported by the National Natural Science Foundation of ChinaProject(N110402012)supported by Fundamental Research Funds for the Central Universities,ChinaProject(2007CB613603)supported by the National Basic Research Program of China
文摘To obtain the appropriate conditions for eliminating Fe3+from NiSO4 solution, the digestion solution of the clinker was used as raw material, which was obtained from roasting the nickel oxide ore with (NH4)2SO4. The ammonium jarosite was successfully synthesized from the solution with analytic grade NH4HCO3. The effects of reaction temperature, reaction time, end pH value of reaction on the removal rate of iron were investigated, and the effect of the initial concentration of Fe3+was also discussed. All of those factors had significant effects on the removal rate of Fe3+, among which the reaction temperature was the most prominent. The appropriate reaction conditions were concluded as follows: reaction temperature 95 ℃ reaction time 3.5 h, end pH value of reaction 2.5 at initial concentration of Fe3+19.36 g/L. The physical aspect of (NH4)2Fe6(SO4)4(OH)12 was cluster figure composed of sheet or prismatic particles with smooth surface.
基金Project supported by the Major Research Plan of the National Natural Science Foundation of China(91962211)National Key Research and Development Program of China(2018YFC1801803)+1 种基金National Natural Science Foundation of China(51804273)Major Project of Guangxi Science and Technology(Guike-AA18242022)。
文摘In order to clarify the solvent extraction and separation behaviors of rare earths and impurity of Al during the extraction and enrichment of low-concentration leach solution of ion-adsorption rare earth ore,the extraction mechanism and separation behaviors of Nd^(3+)and Al^(3+)in the Nd_(2)(SO_(4))_(3)-AI_(2)(SO_(4))_(3) mixed solution using P507 were studied in this work.The extraction of Nd^(3+)and Al^(3+)follows the cation exchange mechanism.With the increase of the equilibrium pH,β_(Nd/Al) in the extraction of the Nd_(2)(SO_(4))_(3)-Al_(2)(SO_(4))_(3) mixed solution using P507 is always higher than that in the extraction of single Nd_(2)(SO_(4))_(3) and Al_(2)(SO_(4))_(3) solutions.It can be attributed to the fact that the extraction of Nd^(3+)using P507 is much faster than that of Al^(3+),and Al^(3+)is more prone to be hydrolyzed at lower pH.β_(Nd/Al) in the extraction of the Nd_(2)(SO_(4))_(3)-Al_(2)(SO_(4))_(3) mixed solution decreases gradually with the increase of mixing time within the equilibrium pH range of 1.5-1.9.The extraction of Nd^(3+)using P507 is much faster than that of Al^(3+),but the stability of Al^(3+)-Ioaded organic phase is better than that of Nd^(3+)-loaded organic phase,thus Nd^(3+)in the Nd^(3+)-loaded organic phase is gradually replaced by Al^(3+)in the aqueous phase with the increase of mixing time.