Many studies suggest that more crashes occur due to mixed traffic flow at unsignalized intersections. However, very little is known about the injury severity of these crashes. The objective of this study is therefore ...Many studies suggest that more crashes occur due to mixed traffic flow at unsignalized intersections. However, very little is known about the injury severity of these crashes. The objective of this study is therefore to investigate how contributory factors affect crash injury severity at unsignalized intersections. The dataset used for this analysis derived from police crash reports from Dec. 2006 to Apr. 2009 in Heilongjiang Province, China. An ordered probit model was developed to predict the probability that the injury severity of a crash will be one of four levels : no injury, slight injury, severe injury, and fatal injury. The injury severity of a crash was evaluated in terms of the most severe injury sustained by any person involved in the crash. Results from the present study showed that different factors had varying effects on crash injury severity. Factors found to result in the increased probability of serious injuries include adverse weather, sideswiping with pedestrians on poor surface, the interaction of rear-ends and the third-class highway, winter night without illumination, and the interaction between traffic signs or markings and the third-class highway. Although there are some limitations in the current study, this study provides more insights into crash injury severity at unsignalized intersections.展开更多
During the past two decades, several methodologies are endorsed to assess the compatibility of roadways for bicycle use under homogeneous traffic conditions. However, these methodologies cannot be adopted under hetero...During the past two decades, several methodologies are endorsed to assess the compatibility of roadways for bicycle use under homogeneous traffic conditions. However, these methodologies cannot be adopted under heterogeneous traffic where on-street bicyclists encounter a complex interaction with various types of vehicles and show divergent operational characteristics. Thus, the present study proposes an initial model suitable for urban road segments in mid-sized cities under such complex situations. For analysis purpose, various operational and physical factors along with user perception data sets (13,624 effective ratings in total) were collected from 74 road segments. Eight important road attributes affecting the bicycle service quality were identified using the most recent and most promising machine learning technique namely, random forest. The identified variables are namely, effective width of outside through lane, pavement condition index, traffic volume, traffic speed, roadside commercial activities, interruptions by unauthorized stoppages of intermittent public transits, vehicular ingress-egress to on-street parking area, and frequency of driveways carrying a high volume of traffic. Service prediction models were developed using ordered probit and ordered logit modeling structures which meet a confidence level of 95%. Prediction performances of developed models were assessed in terms of several statistical parameters and the ordered probit model outperformed the ordered logit model. Incorporating outputs of the probit model, a pre- dictive equation is presented that can identify under what level a segment is offering services for bicycle use. The service levels offered by roadways were classified into six categories varying from 'excellent' to 'worst' (A-F).展开更多
A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed. Using the Chapman-Enskog expansion and multi-scale technique, we obtain the higher-order moments of equilibrium distribution function. A simp...A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed. Using the Chapman-Enskog expansion and multi-scale technique, we obtain the higher-order moments of equilibrium distribution function. A simple traffic light problem is simulated by using the present lattice Boltzmann model, and the result agrees well with analytical solution.展开更多
基金supported by the National Natural Science Foundation of China(No.51178149)
文摘Many studies suggest that more crashes occur due to mixed traffic flow at unsignalized intersections. However, very little is known about the injury severity of these crashes. The objective of this study is therefore to investigate how contributory factors affect crash injury severity at unsignalized intersections. The dataset used for this analysis derived from police crash reports from Dec. 2006 to Apr. 2009 in Heilongjiang Province, China. An ordered probit model was developed to predict the probability that the injury severity of a crash will be one of four levels : no injury, slight injury, severe injury, and fatal injury. The injury severity of a crash was evaluated in terms of the most severe injury sustained by any person involved in the crash. Results from the present study showed that different factors had varying effects on crash injury severity. Factors found to result in the increased probability of serious injuries include adverse weather, sideswiping with pedestrians on poor surface, the interaction of rear-ends and the third-class highway, winter night without illumination, and the interaction between traffic signs or markings and the third-class highway. Although there are some limitations in the current study, this study provides more insights into crash injury severity at unsignalized intersections.
文摘During the past two decades, several methodologies are endorsed to assess the compatibility of roadways for bicycle use under homogeneous traffic conditions. However, these methodologies cannot be adopted under heterogeneous traffic where on-street bicyclists encounter a complex interaction with various types of vehicles and show divergent operational characteristics. Thus, the present study proposes an initial model suitable for urban road segments in mid-sized cities under such complex situations. For analysis purpose, various operational and physical factors along with user perception data sets (13,624 effective ratings in total) were collected from 74 road segments. Eight important road attributes affecting the bicycle service quality were identified using the most recent and most promising machine learning technique namely, random forest. The identified variables are namely, effective width of outside through lane, pavement condition index, traffic volume, traffic speed, roadside commercial activities, interruptions by unauthorized stoppages of intermittent public transits, vehicular ingress-egress to on-street parking area, and frequency of driveways carrying a high volume of traffic. Service prediction models were developed using ordered probit and ordered logit modeling structures which meet a confidence level of 95%. Prediction performances of developed models were assessed in terms of several statistical parameters and the ordered probit model outperformed the ordered logit model. Incorporating outputs of the probit model, a pre- dictive equation is presented that can identify under what level a segment is offering services for bicycle use. The service levels offered by roadways were classified into six categories varying from 'excellent' to 'worst' (A-F).
文摘A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed. Using the Chapman-Enskog expansion and multi-scale technique, we obtain the higher-order moments of equilibrium distribution function. A simple traffic light problem is simulated by using the present lattice Boltzmann model, and the result agrees well with analytical solution.