Based on the generalized Weyl quantization scheme, which relies on the generalized Wigner operator Ok (p, q) with a real k parameter and can unify the P-Q, Q-P, and Weyl ordering of operators in k = 1, - 1,0, respec...Based on the generalized Weyl quantization scheme, which relies on the generalized Wigner operator Ok (p, q) with a real k parameter and can unify the P-Q, Q-P, and Weyl ordering of operators in k = 1, - 1,0, respectively, we find the mutual transformations between 6 (p - P) (q - Q), (q - Q) 3 (p - P), and (p, q), which are, respectively, the integration kernels of the P-Q, Q-P, and generalized Weyl quantization schemes. The mutual transformations provide us with a new approach to deriving the Wigner function of quantum states. The - and - ordered forms of (p, q) are also derived, which helps us to put the operators into their - and - ordering, respectively.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11175113)the Natural Science Foundation of Shandong Province of China(Grant No.Y2008A16)+1 种基金the University Experimental Technology Foundation of Shandong Province of China(Grant No.S04W138)the Natural Science Foundation of Heze University of Shandong Province of China(Grants Nos.XY07WL01 and XY08WL03)
文摘Based on the generalized Weyl quantization scheme, which relies on the generalized Wigner operator Ok (p, q) with a real k parameter and can unify the P-Q, Q-P, and Weyl ordering of operators in k = 1, - 1,0, respectively, we find the mutual transformations between 6 (p - P) (q - Q), (q - Q) 3 (p - P), and (p, q), which are, respectively, the integration kernels of the P-Q, Q-P, and generalized Weyl quantization schemes. The mutual transformations provide us with a new approach to deriving the Wigner function of quantum states. The - and - ordered forms of (p, q) are also derived, which helps us to put the operators into their - and - ordering, respectively.