By virtue of the technique of integration within an ordered product of operators we present a new approach to obtain operators' normal ordering. We first put operators into their Weyl ordering through the Weyl-Wig...By virtue of the technique of integration within an ordered product of operators we present a new approach to obtain operators' normal ordering. We first put operators into their Weyl ordering through the Weyl-Wigner quantization scheme, and then we convert the Weyl ordered operators into normal ordering by virtue of the normally ordered form of the Wigner operator.展开更多
By extending the usual Wigner operator to the s-parameterized one as 1/4π2 integral (dyduexp [iu(q-Q)+iy(p-P)+is/2yu]) from n=- ∞ to ∞ with s beng a,real parameter,we propose a generalized Weyl quantization...By extending the usual Wigner operator to the s-parameterized one as 1/4π2 integral (dyduexp [iu(q-Q)+iy(p-P)+is/2yu]) from n=- ∞ to ∞ with s beng a,real parameter,we propose a generalized Weyl quantization scheme which accompanies a new generalized s-parameterized ordering rule.This rule recovers P-Q ordering,Q-P ordering,and Weyl ordering of operators in s = 1,1,0 respectively.Hence it differs from the Cahill-Glaubers’ ordering rule which unifies normal ordering,antinormal ordering,and Weyl ordering.We also show that in this scheme the s-parameter plays the role of correlation between two quadratures Q and P.The formula that can rearrange a given operator into its new s-parameterized ordering is presented.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10947017/A05)the Specialized Research Fund for the Doctorial Progress of Higher Education of China (GrantNo. 20070358009)
文摘By virtue of the technique of integration within an ordered product of operators we present a new approach to obtain operators' normal ordering. We first put operators into their Weyl ordering through the Weyl-Wigner quantization scheme, and then we convert the Weyl ordered operators into normal ordering by virtue of the normally ordered form of the Wigner operator.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11175113 and 11147009)the Natural Science Foundation of Shandong Province of China (Grant No. ZR2010AQ027)the Program of Higher Educational Science and Technology of Shandong Province,China (Grant No. J10LA15)
文摘By extending the usual Wigner operator to the s-parameterized one as 1/4π2 integral (dyduexp [iu(q-Q)+iy(p-P)+is/2yu]) from n=- ∞ to ∞ with s beng a,real parameter,we propose a generalized Weyl quantization scheme which accompanies a new generalized s-parameterized ordering rule.This rule recovers P-Q ordering,Q-P ordering,and Weyl ordering of operators in s = 1,1,0 respectively.Hence it differs from the Cahill-Glaubers’ ordering rule which unifies normal ordering,antinormal ordering,and Weyl ordering.We also show that in this scheme the s-parameter plays the role of correlation between two quadratures Q and P.The formula that can rearrange a given operator into its new s-parameterized ordering is presented.