Thin film lubrication (TFL),a lubrication regime that fills the gap between boundary lubrication (BL)and elastohydrodynamic lubrication (EHL) regimes,was proposed 20 years ago.Since it was first recorded in the litera...Thin film lubrication (TFL),a lubrication regime that fills the gap between boundary lubrication (BL)and elastohydrodynamic lubrication (EHL) regimes,was proposed 20 years ago.Since it was first recorded in the literature,TFL has gained substantial interest and has been advanced in the fields of theoretical and experimental research.Following the revelation of the TFL phenomenon and its central ideas,many studies have been conducted.This paper attempts to systematically review the major developments in terms of both the history and the advances in TFL.It begins with the description and definition of TFL,followed by the state-of-art studies on experimental technologies and their applications.Future prospects of relevant studies and applications are also discussed.展开更多
Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the ...Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the mesoporous characteristics of the template,with cubic symmetry(ia3d).It consists of a β-MnO2 crystalline phase corresponding to pyrolusite,with a rutile structure.Transmission electron microscopy and X-ray photoelectron spectroscopy showed that the 3D-MnO2 catalyst has a large number of exposed Mn4+ ions on the(110)crystal plane surfaces,with a lattice spacing of 0.311 nm; this enhances oxidation of HCHO.Complete conversion of HCHO to CO2 and H2O was achieved at 130 °C on 3D-MnO2; the same conversions on α-MnO2 and β-MnO2 nanorods were obtained at 140 and 180 °C,respectively,under the same conditions.The specific mesoporous structure,high specific surface area,and large number of surface Mn4+ ions are responsible for the catalytic activity of 3D-MnO2 in HCHO oxidation.展开更多
Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in ...Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in the material research field.Herein,a kind of ultrafine zinc oxide(ZnO)nanoparticles(NPs)supported on three-dimensional(3D)ordered mesoporous carbon spheres(ZnO/OMCS)is prepared from silica inverse opal by using phenolic resol precursor as carbon source.The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres.ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption(−39.3 dB at 10.4 GHz with a small thickness of 2 mm)and a broad effective absorption bandwidth(9.1 GHz).The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure.This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials.展开更多
Developing low-cost and earth-abundant electrocatalysts with high performance for electrochemical water splitting is a challenging issue. Herein, we report a facile and effective way to fabricate three-dimension(3D) o...Developing low-cost and earth-abundant electrocatalysts with high performance for electrochemical water splitting is a challenging issue. Herein, we report a facile and effective way to fabricate three-dimension(3D) ordered mesoporous Co1-xFexP(x=0, 0.25, 0.5, 0.75) electrocatalyst.Benefiting from 3D ordered mesoporous pore channels and composition optimization, the Co0.75Fe0.25 P exhibits excellent electrocatalytic activities with low overpotentials of 270 and 209 mV at 10 mA cm^-2 for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER), respectively, in the alkaline electrolyte along with a durable electrochemical stability. In addition, as both the cathode and anode, the Co0.75Fe0.25P also exhibits superior electrolysis water splitting performance with only an applied voltage of 1.63 V to attain a current density of 10 m A cm^-2 without obvious decay for 18 h,indicating that the Co0.75Fe0.25P is an efficient electrocatalyst for overall water splitting.展开更多
Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects f...Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects for commercial application,such as uncontrollable ordered layered structure,which leads to higher energy barrier for Li+diffusion.In addition,suffering from structural mutability,the bulk nickelrich cathode materials likely trigger overall volumetric variation and intergranular cracks,thus obstructing the lithium ion diffusion path and shortening the service life of the whole device.Herein,we report wellordered layered Li Ni0.8Co0.1Mn0.1O2 submicron spheroidal particles via an optimized co-precipitation and investigated as LIBs cathodes for high-performance lithium storage.The as-fabricated Li Ni0.8Co0.1Mn0.1O2 delivers high initial capacity of 228 mAh g–1,remarkable energy density of 866 Wh kg–1,rapid Li ion diffusion coefficient(10–9cm2s–1)and low voltage decay.The remarkable electrochemical performance should be ascribed to the well-ordered layered structure and uniform submicron spheroidal particles,which enhance the structural stability and ameliorate strain relaxation via reducing the parcel size and shortening Li-ion diffusion distance.This work anticipatorily provides an inspiration to better design particle morphology for structural stability and rate capability in electrochemistry energy storage devices.展开更多
Simultaneously enhancing the reaction kinetics,mass transport,and gas release during alkaline hydrogen evolution reaction(HER)is critical to minimizing the reaction polarization resistance,but remains a big challenge....Simultaneously enhancing the reaction kinetics,mass transport,and gas release during alkaline hydrogen evolution reaction(HER)is critical to minimizing the reaction polarization resistance,but remains a big challenge.Through rational design of a hierarchical multiheterogeneous three-dimensionally(3D)ordered macroporous Mo_(2)C-embedded nitrogen-doped carbon with ultrafine Ru nanoclusters anchored on its surface(OMS Mo_(2)C/NC-Ru),we realize both electronic and morphologic engineering of the catalyst to maximize the electrocatalysis performance.The formed Ru-NC heterostructure shows regulative electronic states and optimized adsorption energy with the intermediate H*,and the Mo_(2)C-NC heterostructure accelerates the Volmer reaction due to the strong water dissociation ability as confirmed by theoretical calculations.Consequently,superior HER activity in alkaline solution with an extremely low overpotential of 15.5 mV at 10 mAcm^(−2)with the mass activity more than 17 times higher than that of the benchmark Pt/C,an ultrasmall Tafel slope of 22.7 mV dec−1,and excellent electrocatalytic durability were achieved,attributing to the enhanced mass transport and favorable gas release process endowed from the unique OMS Mo_(2)C/NC-Ru structure.By oxidizing OMS Mo_(2)C/NC-Ru into OMS MoO_(3)-RuO_(2)catalyst,it can also be applied as efficient oxygen evolution electrocatalyst,enabling the construction of a quasi-symmetric electrolyzer for overall water splitting.Such a device's performance surpassed the state-of-the-art Pt/C||RuO2 electrolyzer.This study provides instructive guidance for designing 3D-ordered macroporous multicomponent catalysts for efficient catalytic applications.展开更多
“Intrinsic”strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance.Nevertheless,the structure–activity ...“Intrinsic”strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance.Nevertheless,the structure–activity relationship between defects and charge storage is ambiguous,which may be revealed by constructing highly ordered vacancy structures.Herein,we demonstrate molybdenum carbide MXene nanosheets with customized in-plane chemical ordered vacancies(Mo_(1.33)CT_(x)),by utilizing selective etching strategies.Synchrotron-based X-ray characterizations reveal that Mo atoms in Mo1.33CTx show increased average valence of+4.44 compared with the control Mo_(2)CT_(x).Benefited from the introduced atomic active sites and high valence of Mo,Mo_(1.33)CT_(x)achieves an outstanding capacity of 603 mAh·g^(−1)at 0.2 A·g^(−1),superior to most original MXenes.Li+storage kinetics analysis and density functional theory(DFT)simulations show that this optimized performance ensues from the more charge compensation during charge–discharge process,which enhances Faraday reaction compared with pure Mo_(2)CT_(x).This vacancy manipulation provides an efficient way to realize MXene’s potential as promising electrodes.展开更多
Cu-rich cell boundary phase is difficult to precipitate evenly,resulting in a generally poor demagnetization curve squareness for Fe-rich Sm_(2)Co_(17)-type magnet,which is a key factor limiting the further improvemen...Cu-rich cell boundary phase is difficult to precipitate evenly,resulting in a generally poor demagnetization curve squareness for Fe-rich Sm_(2)Co_(17)-type magnet,which is a key factor limiting the further improvement of magnetic energy product.In this study,we report that nanoscale strip-like ordered micro-domains distributed in1:7H disordered matrix phase of the solid solution precursor is a new factor significantly affecting the precipitation and distribution of the cell boundary phase.Long strip-like and continuous micro-twin structure with twin boundaries neatly perpendicular to the C-axis is observed after sintering treatment.After solution treatment,sequential and long strip-like micro-twins gradually transform into disordered state along the basal plane,forming narrow disordered 1:7H(TbCu_(7)-type structure)phase between the separated strip-like ordered micro-domains.This disordering transformation takes place via broken down of the long strip-like ordered micro-domains,which is accomplished by narrowing along the width direction followed by reduction of the length.Furthermore,a new model revealing the effect of the ordered micro-domains on the formation of the cell boundary phase is proposed.Antiphase boundaries enriched in Cu have already existed in the precursor with long strip-like ordered micro-domains.Therefore,the Cu-rich cell boundary phase acting as strong pinning centers cannot be precipitated homogeneously and distributed continuously after aging,resulting in a poor demagnetization curve squareness of Sm_(2)Co_(17)-type magnet.Our results indicate that significant broken down of the nanoscale ordered micro-domains in solution precursor is the key factor improving the distribution of cell boundary phase in Sm_(2)Co_(17)-type magnets.展开更多
基金The work was financially supported by the National Natural Science Foundation of China
文摘Thin film lubrication (TFL),a lubrication regime that fills the gap between boundary lubrication (BL)and elastohydrodynamic lubrication (EHL) regimes,was proposed 20 years ago.Since it was first recorded in the literature,TFL has gained substantial interest and has been advanced in the fields of theoretical and experimental research.Following the revelation of the TFL phenomenon and its central ideas,many studies have been conducted.This paper attempts to systematically review the major developments in terms of both the history and the advances in TFL.It begins with the description and definition of TFL,followed by the state-of-art studies on experimental technologies and their applications.Future prospects of relevant studies and applications are also discussed.
基金supported by the National Natural Science Foundation of China(21325731,21221004 and 51478241)~~
文摘Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the mesoporous characteristics of the template,with cubic symmetry(ia3d).It consists of a β-MnO2 crystalline phase corresponding to pyrolusite,with a rutile structure.Transmission electron microscopy and X-ray photoelectron spectroscopy showed that the 3D-MnO2 catalyst has a large number of exposed Mn4+ ions on the(110)crystal plane surfaces,with a lattice spacing of 0.311 nm; this enhances oxidation of HCHO.Complete conversion of HCHO to CO2 and H2O was achieved at 130 °C on 3D-MnO2; the same conversions on α-MnO2 and β-MnO2 nanorods were obtained at 140 and 180 °C,respectively,under the same conditions.The specific mesoporous structure,high specific surface area,and large number of surface Mn4+ ions are responsible for the catalytic activity of 3D-MnO2 in HCHO oxidation.
基金The authors are grateful of the financial support by the National Natural Science Foundation of China(51902083 and 21606068)the Foundation Strengthening Program(2019-JCJQ-142-00)the Higher Education Science and Technology Research Project of Hebei Province(ZD2019087).
文摘Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in the material research field.Herein,a kind of ultrafine zinc oxide(ZnO)nanoparticles(NPs)supported on three-dimensional(3D)ordered mesoporous carbon spheres(ZnO/OMCS)is prepared from silica inverse opal by using phenolic resol precursor as carbon source.The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres.ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption(−39.3 dB at 10.4 GHz with a small thickness of 2 mm)and a broad effective absorption bandwidth(9.1 GHz).The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure.This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials.
基金supported by the National Natural Science Foundation of China (51571072 and 51871078)Heilongjiang Science Foundation (E2018028)
文摘Developing low-cost and earth-abundant electrocatalysts with high performance for electrochemical water splitting is a challenging issue. Herein, we report a facile and effective way to fabricate three-dimension(3D) ordered mesoporous Co1-xFexP(x=0, 0.25, 0.5, 0.75) electrocatalyst.Benefiting from 3D ordered mesoporous pore channels and composition optimization, the Co0.75Fe0.25 P exhibits excellent electrocatalytic activities with low overpotentials of 270 and 209 mV at 10 mA cm^-2 for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER), respectively, in the alkaline electrolyte along with a durable electrochemical stability. In addition, as both the cathode and anode, the Co0.75Fe0.25P also exhibits superior electrolysis water splitting performance with only an applied voltage of 1.63 V to attain a current density of 10 m A cm^-2 without obvious decay for 18 h,indicating that the Co0.75Fe0.25P is an efficient electrocatalyst for overall water splitting.
基金supported by the National Natural Science Foundation of China (21573083)1000 Young Talent (to Deli Wang)the Innovation Research Funds of HuaZhong University of Science and Technology (2017KFYXJJ164)。
文摘Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects for commercial application,such as uncontrollable ordered layered structure,which leads to higher energy barrier for Li+diffusion.In addition,suffering from structural mutability,the bulk nickelrich cathode materials likely trigger overall volumetric variation and intergranular cracks,thus obstructing the lithium ion diffusion path and shortening the service life of the whole device.Herein,we report wellordered layered Li Ni0.8Co0.1Mn0.1O2 submicron spheroidal particles via an optimized co-precipitation and investigated as LIBs cathodes for high-performance lithium storage.The as-fabricated Li Ni0.8Co0.1Mn0.1O2 delivers high initial capacity of 228 mAh g–1,remarkable energy density of 866 Wh kg–1,rapid Li ion diffusion coefficient(10–9cm2s–1)and low voltage decay.The remarkable electrochemical performance should be ascribed to the well-ordered layered structure and uniform submicron spheroidal particles,which enhance the structural stability and ameliorate strain relaxation via reducing the parcel size and shortening Li-ion diffusion distance.This work anticipatorily provides an inspiration to better design particle morphology for structural stability and rate capability in electrochemistry energy storage devices.
基金University of Macao,Grant/Award Numbers:MYRG2018-00192-IAPME,MYRG2020-00187-IAPMEScience and Technology Development Fund,Macao SAR,Grant/Award Numbers:0021/2019/AIR,0041/2019/A1,0046/2019/AFJ,0191/2017/A3UEA funding。
文摘Simultaneously enhancing the reaction kinetics,mass transport,and gas release during alkaline hydrogen evolution reaction(HER)is critical to minimizing the reaction polarization resistance,but remains a big challenge.Through rational design of a hierarchical multiheterogeneous three-dimensionally(3D)ordered macroporous Mo_(2)C-embedded nitrogen-doped carbon with ultrafine Ru nanoclusters anchored on its surface(OMS Mo_(2)C/NC-Ru),we realize both electronic and morphologic engineering of the catalyst to maximize the electrocatalysis performance.The formed Ru-NC heterostructure shows regulative electronic states and optimized adsorption energy with the intermediate H*,and the Mo_(2)C-NC heterostructure accelerates the Volmer reaction due to the strong water dissociation ability as confirmed by theoretical calculations.Consequently,superior HER activity in alkaline solution with an extremely low overpotential of 15.5 mV at 10 mAcm^(−2)with the mass activity more than 17 times higher than that of the benchmark Pt/C,an ultrasmall Tafel slope of 22.7 mV dec−1,and excellent electrocatalytic durability were achieved,attributing to the enhanced mass transport and favorable gas release process endowed from the unique OMS Mo_(2)C/NC-Ru structure.By oxidizing OMS Mo_(2)C/NC-Ru into OMS MoO_(3)-RuO_(2)catalyst,it can also be applied as efficient oxygen evolution electrocatalyst,enabling the construction of a quasi-symmetric electrolyzer for overall water splitting.Such a device's performance surpassed the state-of-the-art Pt/C||RuO2 electrolyzer.This study provides instructive guidance for designing 3D-ordered macroporous multicomponent catalysts for efficient catalytic applications.
基金support from the National Key Research and Development Program of China(Nos.2020YFA0405800,2019YFA0405601)the National Natural Science Foundation of China(NSFC)(Nos.U1932201,U2032113)+4 种基金the Youth Innovation Promotion Association of CAS(No.2022457)USTC Research Funds of the Double First-Class Initiative(No.YD2310002003)the Fundamental Research Funds for the Central Universities(Nos.WK2060000039,WK2310000088),Institute of Energy,Hefei Comprehensive National Science Center,University Synergy Innovation Program of Anhui Province(No.GXXT-2020-002)Collaborative Innovation Program of Hefei Science Center,CAS(No.2021HSC-CIP016)C.D.W.(No.202006340190)acknowledge financial support from the China Scholarship Council(CSC).L.S.acknowledges support from the Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education).
文摘“Intrinsic”strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance.Nevertheless,the structure–activity relationship between defects and charge storage is ambiguous,which may be revealed by constructing highly ordered vacancy structures.Herein,we demonstrate molybdenum carbide MXene nanosheets with customized in-plane chemical ordered vacancies(Mo_(1.33)CT_(x)),by utilizing selective etching strategies.Synchrotron-based X-ray characterizations reveal that Mo atoms in Mo1.33CTx show increased average valence of+4.44 compared with the control Mo_(2)CT_(x).Benefited from the introduced atomic active sites and high valence of Mo,Mo_(1.33)CT_(x)achieves an outstanding capacity of 603 mAh·g^(−1)at 0.2 A·g^(−1),superior to most original MXenes.Li+storage kinetics analysis and density functional theory(DFT)simulations show that this optimized performance ensues from the more charge compensation during charge–discharge process,which enhances Faraday reaction compared with pure Mo_(2)CT_(x).This vacancy manipulation provides an efficient way to realize MXene’s potential as promising electrodes.
基金financially supported by the National Key R&D Program of China(No.2021YFB3503102)Zhejiang Provincial Key R&D Program(No.2021C01191)+2 种基金Science and Technology Innovation 2025 Major Project of Ningbo(No.2020Z037)Ningbo Key R&D Program(No.20222ZDYF020027)Ningbo Natural Science Foundation(No.2021J216)。
文摘Cu-rich cell boundary phase is difficult to precipitate evenly,resulting in a generally poor demagnetization curve squareness for Fe-rich Sm_(2)Co_(17)-type magnet,which is a key factor limiting the further improvement of magnetic energy product.In this study,we report that nanoscale strip-like ordered micro-domains distributed in1:7H disordered matrix phase of the solid solution precursor is a new factor significantly affecting the precipitation and distribution of the cell boundary phase.Long strip-like and continuous micro-twin structure with twin boundaries neatly perpendicular to the C-axis is observed after sintering treatment.After solution treatment,sequential and long strip-like micro-twins gradually transform into disordered state along the basal plane,forming narrow disordered 1:7H(TbCu_(7)-type structure)phase between the separated strip-like ordered micro-domains.This disordering transformation takes place via broken down of the long strip-like ordered micro-domains,which is accomplished by narrowing along the width direction followed by reduction of the length.Furthermore,a new model revealing the effect of the ordered micro-domains on the formation of the cell boundary phase is proposed.Antiphase boundaries enriched in Cu have already existed in the precursor with long strip-like ordered micro-domains.Therefore,the Cu-rich cell boundary phase acting as strong pinning centers cannot be precipitated homogeneously and distributed continuously after aging,resulting in a poor demagnetization curve squareness of Sm_(2)Co_(17)-type magnet.Our results indicate that significant broken down of the nanoscale ordered micro-domains in solution precursor is the key factor improving the distribution of cell boundary phase in Sm_(2)Co_(17)-type magnets.