In this paper we numerically investigate the chaotic behaviours of the fractional-order Ikeda delay system. The results show that chaos exists in the fractional-order Ikeda delay system with order less than 1. The low...In this paper we numerically investigate the chaotic behaviours of the fractional-order Ikeda delay system. The results show that chaos exists in the fractional-order Ikeda delay system with order less than 1. The lowest order for chaos to be a, ble to appear in this system is found to be 0.1. Master-slave synchronization of chaotic fractional-order Ikeda delay systems with linear coupling is also studied.展开更多
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to ac...This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
This paper proposes a method to achieve projective synchronization of the fractional order chaotic Rossler system. First, construct the fractional order Rossler system's corresponding approximate integer order system...This paper proposes a method to achieve projective synchronization of the fractional order chaotic Rossler system. First, construct the fractional order Rossler system's corresponding approximate integer order system, then a control method based on a partially linear decomposition and negative feedback of state errors is utilized on the new integer order system. Mathematic analyses prove the feasibility and the numerical simulations show the effectiveness of the proposed method.展开更多
This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and extern...This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances,finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller(ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization(PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.展开更多
The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to th...The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.展开更多
To determine whether a given deterministic nonlinear dynamic system is chaotic or periodic, a novel test approach named zero-one (0-1) test has been proposed recently. In this approach, the regular and chaotic motio...To determine whether a given deterministic nonlinear dynamic system is chaotic or periodic, a novel test approach named zero-one (0-1) test has been proposed recently. In this approach, the regular and chaotic motions can be decided by calculating the parameter K approaching asymptotically to zero or one. In this study, we focus on the 0-1 test algorithm and illustrate the selection of parameters of this algorithm by numerical experiments. To validate the reliability and the universality of this algorithm, it is applied to typical nonlinear dynamic systems, including fractional-order dynamic system.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60404005).
文摘In this paper we numerically investigate the chaotic behaviours of the fractional-order Ikeda delay system. The results show that chaos exists in the fractional-order Ikeda delay system with order less than 1. The lowest order for chaos to be a, ble to appear in this system is found to be 0.1. Master-slave synchronization of chaotic fractional-order Ikeda delay systems with linear coupling is also studied.
文摘This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
基金Project supported by the Key Youth Project of Southwest University for Nationalities of China and the Natural Science Foundation of the State Nationalities Affairs Commission of China (Grant Nos 05XN07 and 07XN05).
文摘This paper proposes a method to achieve projective synchronization of the fractional order chaotic Rossler system. First, construct the fractional order Rossler system's corresponding approximate integer order system, then a control method based on a partially linear decomposition and negative feedback of state errors is utilized on the new integer order system. Mathematic analyses prove the feasibility and the numerical simulations show the effectiveness of the proposed method.
文摘This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances,finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller(ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization(PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.
基金supported by the Natural Science Foundation of Hebei Province,China (Grant Nos A2008000136 and A2006000128)
文摘The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.
基金Project supported by the National Natural Science Foundation of of China (Grant No. 60672041)
文摘To determine whether a given deterministic nonlinear dynamic system is chaotic or periodic, a novel test approach named zero-one (0-1) test has been proposed recently. In this approach, the regular and chaotic motions can be decided by calculating the parameter K approaching asymptotically to zero or one. In this study, we focus on the 0-1 test algorithm and illustrate the selection of parameters of this algorithm by numerical experiments. To validate the reliability and the universality of this algorithm, it is applied to typical nonlinear dynamic systems, including fractional-order dynamic system.