By modeling the Sun as an electrical dynamo, the speed and frequency of the Sun’s electromagnetic field is determined. The results confirm the approximate radius of the Sun’s inner core 1,220,000 meters and gravity ...By modeling the Sun as an electrical dynamo, the speed and frequency of the Sun’s electromagnetic field is determined. The results confirm the approximate radius of the Sun’s inner core 1,220,000 meters and gravity at its surface, 274 m/s2. The Sun’s rotating electromagnetic field radiates to Pluto and beyond. Like gravity, the near magnetic field of a sphere weakens with the inverse square of the distance. The Sun is a constant speed and constant acceleration machine. Like a set speed Ferris wheel, the orbital speed of planets is faster nearer to the Sun and reduces as the distance increases. The Standard Gravitation Parameter (m3/s2) is analogous to accelerating cubic volume (m3/s2) of the solar system. The planets are being pushed away by a centrifugal force from the constant acceleration of the Sun’s magnetic field, while at the same time being pulled in by the force of the Sun’s centripetal acceleration. Planetary orbits are the result of this balancing of forces. Gravity is a centripetal acceleration derived from a rotating electromagnetic field. Gravity is derived from an electromagnetic field which means it is not a force. There are only three forces in the universe: electromagnetic, strong nuclear and weak nuclear.展开更多
In sandy sediments, scour and fill is the key process contributed to mine burial. The scour processes surrounding the cylinder mines freely resting on the sandy seabed under the 12-hr combined action of tidal currents...In sandy sediments, scour and fill is the key process contributed to mine burial. The scour processes surrounding the cylinder mines freely resting on the sandy seabed under the 12-hr combined action of tidal currents and wind-generated waves, especially over typhoon events are numerically simulated using the DRAMBUIE model. The East China Sea is a good case study due to the dominant impact of summer typhoon events on sediment transport and scour. The numerical results show that the scour depth generally increases with time under the combined current and wave stresses exerted on the seabed, while the depth of the scour pit depends on infill once the currents subside. There is a positive relationship between the scour depth and the bottom orbital velocity after experiencing 12-hr wave action including storm waves, while the relation is not linear. The experimental results also display an elevated trend for scour depth with the increase of orbital velocity. The numerical results reveal a surprising phenomenon: the mobility of sand altering with the increasing bed shear stress larger than the certain threshold, which is also manifested as the curves of scour depth with the different grain size might cross each other. For laboratory experiments, the variability of sand mobility does not occur, likely because typhoon storm waves cannot be reproduced in the flume. More numerical tests indicate that the intersection will be triggered by the division of critical Shields parameter. The preliminary analysis suggests that the phenomenon never documented is likely generated from the error of empirical formulae.展开更多
Recent research on short-term topographic change in the Yangtze Estuary channel under storm surge conditions is briefly summarized. The mild-slope, Boussinesq and action balance equations are compared and analyzed. Th...Recent research on short-term topographic change in the Yangtze Estuary channel under storm surge conditions is briefly summarized. The mild-slope, Boussinesq and action balance equations are compared and analyzed. The action balance equation, SWAN, was used as a wave numerical model to forecast strong storm waves in the Yangtze Estuary. The spherical coordinate system and source terms used in the equation are described in this paper. The significant wave height and the wave orbital motion velocity near the bottom of the channel during 20 m/s winds in the EES direction were simulated, and the model was calibrated with observation data of winds and waves generated by Tropical Cyclone 9912. The distribution of critical velocity for incipient motion along the bottom was computed according to the threshold velocity formula for bottom sediment. The mechanism of rapid deposition is analyzed based on the difference between the root-mean-square value of the near-bottom wave orbital motion velocity and the bottom critical tractive velocity. The results show that a large amount of bottom sediments from Hengsha Shoal and Jiuduan Shoal are lifted into the water body when 20 m/s wind is blowing in the EES direction. Some of the sediments may enter the channel with the cross-channel current, causing serious rapid deposition. Finally, the tendency of the storm to induce rapid deposition in the Yangtze Estuary channel zone is analyzed.展开更多
文摘By modeling the Sun as an electrical dynamo, the speed and frequency of the Sun’s electromagnetic field is determined. The results confirm the approximate radius of the Sun’s inner core 1,220,000 meters and gravity at its surface, 274 m/s2. The Sun’s rotating electromagnetic field radiates to Pluto and beyond. Like gravity, the near magnetic field of a sphere weakens with the inverse square of the distance. The Sun is a constant speed and constant acceleration machine. Like a set speed Ferris wheel, the orbital speed of planets is faster nearer to the Sun and reduces as the distance increases. The Standard Gravitation Parameter (m3/s2) is analogous to accelerating cubic volume (m3/s2) of the solar system. The planets are being pushed away by a centrifugal force from the constant acceleration of the Sun’s magnetic field, while at the same time being pulled in by the force of the Sun’s centripetal acceleration. Planetary orbits are the result of this balancing of forces. Gravity is a centripetal acceleration derived from a rotating electromagnetic field. Gravity is derived from an electromagnetic field which means it is not a force. There are only three forces in the universe: electromagnetic, strong nuclear and weak nuclear.
文摘In sandy sediments, scour and fill is the key process contributed to mine burial. The scour processes surrounding the cylinder mines freely resting on the sandy seabed under the 12-hr combined action of tidal currents and wind-generated waves, especially over typhoon events are numerically simulated using the DRAMBUIE model. The East China Sea is a good case study due to the dominant impact of summer typhoon events on sediment transport and scour. The numerical results show that the scour depth generally increases with time under the combined current and wave stresses exerted on the seabed, while the depth of the scour pit depends on infill once the currents subside. There is a positive relationship between the scour depth and the bottom orbital velocity after experiencing 12-hr wave action including storm waves, while the relation is not linear. The experimental results also display an elevated trend for scour depth with the increase of orbital velocity. The numerical results reveal a surprising phenomenon: the mobility of sand altering with the increasing bed shear stress larger than the certain threshold, which is also manifested as the curves of scour depth with the different grain size might cross each other. For laboratory experiments, the variability of sand mobility does not occur, likely because typhoon storm waves cannot be reproduced in the flume. More numerical tests indicate that the intersection will be triggered by the division of critical Shields parameter. The preliminary analysis suggests that the phenomenon never documented is likely generated from the error of empirical formulae.
基金supported by the National Natural Science Foundation of China (Grant No. 50779015)
文摘Recent research on short-term topographic change in the Yangtze Estuary channel under storm surge conditions is briefly summarized. The mild-slope, Boussinesq and action balance equations are compared and analyzed. The action balance equation, SWAN, was used as a wave numerical model to forecast strong storm waves in the Yangtze Estuary. The spherical coordinate system and source terms used in the equation are described in this paper. The significant wave height and the wave orbital motion velocity near the bottom of the channel during 20 m/s winds in the EES direction were simulated, and the model was calibrated with observation data of winds and waves generated by Tropical Cyclone 9912. The distribution of critical velocity for incipient motion along the bottom was computed according to the threshold velocity formula for bottom sediment. The mechanism of rapid deposition is analyzed based on the difference between the root-mean-square value of the near-bottom wave orbital motion velocity and the bottom critical tractive velocity. The results show that a large amount of bottom sediments from Hengsha Shoal and Jiuduan Shoal are lifted into the water body when 20 m/s wind is blowing in the EES direction. Some of the sediments may enter the channel with the cross-channel current, causing serious rapid deposition. Finally, the tendency of the storm to induce rapid deposition in the Yangtze Estuary channel zone is analyzed.