In this paper, the relative orbital configurations of satellites in formation flying with non-perturbation and J<SUB>2</SUB> perturbation are studied, and an orbital elements method is proposed to obtain t...In this paper, the relative orbital configurations of satellites in formation flying with non-perturbation and J<SUB>2</SUB> perturbation are studied, and an orbital elements method is proposed to obtain the relative orbital configurations of satellites in formation. Firstly, under the condition of non-perturbation, we obtain many shapes of relative orbital configurations when the semi-major axes of satellites are equal. These shapes can be lines, ellipses or distorted closed curves. Secondly, on the basis of the analysis of J<SUB>2</SUB> effect on relative orbital configurations, we find out that J<SUB>2</SUB> effect can induce two kinds of changes of relative orbital configurations. They are distortion and drifting, respectively. In addition, when J<SUB>2</SUB> perturbation is concerned, we also find that the semi-major axes of the leading and following satellites should not be the same exactly in order to decrease the J<SUB>2</SUB> effect. The relationship of relative orbital elements and J<SUB>2</SUB> effect is obtained through simulations. Finally, the minimum relation perturbation conditions are established in order to reduce the influence of the J<SUB>2</SUB> effect. The results show that the minimum relation perturbation conditions can reduce the J<SUB>2</SUB> effect significantly when the orbital element differences are small enough, and they can become rules for the design of satellite formation flying.展开更多
AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using ...AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using Mimics21.0 software.The repair guide plate model for inferior orbital wall fracture was designed using 3-matic13.0 and Geomagic wrap 21.0 software.The finite element model of orbital blowout fracture and absorbable repair plate was established using 3-matic13.0 and ANSYS Workbench 21.0 software.The mechanical response of absorbable plates,with thicknesses of 0.6 and 1.2 mm,was modeled after their placement in the orbit.Two patients with inferior orbital wall fractures volunteered to receive single-layer and double-layer absorbable plates combined with 3D printing technology to facilitate surgical treatment of orbital wall fractures.RESULTS:The finite element models of orbital blowout fracture and absorbable plate were successfully established.Finite element analysis(FEA)showed that when the Young’s modulus of the absorbable plate decreases to 3.15 MPa,the repair material with a thickness of 0.6 mm was influenced by the gravitational forces of the orbital contents,resulting in a maximum total deformation of approximately 3.3 mm.Conversely,when the absorbable plate was 1.2 mm thick,the overall maximum total deformation was around 0.4 mm.The half-year follow-up results of the clinical cases confirmed that the absorbable plate with a thickness of 1.2 mm had smaller maximum total deformation and better clinical efficacy.CONCLUSION:The biomechanical analysis observations in this study are largely consistent with the clinical situation.The use of double-layer absorbable plates in conjunction with 3D printing technology is recommended to support surgical treatment of infraorbital wall blowout fractures.展开更多
Actinide elements encaged in a superatomic cluster can exhibit unique properties due to their hyperactive valence electrons. Herein, the electronic and spectroscopic properties of Th@Au14 are predicted and compared wi...Actinide elements encaged in a superatomic cluster can exhibit unique properties due to their hyperactive valence electrons. Herein, the electronic and spectroscopic properties of Th@Au14 are predicted and compared with that of the isoelectronic entities [Ac@Au14]- and [Pa@Au14]+ using density functional theory. The calculation results indicate that these clusters all adopt a closed- shell superatomic 18-electron configuration of the 1S21p61D10 Jellium state. The absorption spectrum of Th@Au14 can be interpreted by the Jelliumatic orbital model. In addition, calculated spectra of pyridine-Th@Au14 complexes in the blue laser band exhibit strong peaks attributable to charge transfer (CT) from the metal to the pyridine molecule. These charge-transfer bands lead to a resonant surface-enhanced Raman scattering (SERS) enhancement of -104. This work suggests a basis for designing and synthesizing SERS substrate materials based on actinide-embedded gold superatom models.展开更多
The tethered satellite system has a great potential and one of its very useful applications is momentum transfer. Raising a payload by deploying it upward from an orbitor on a long tether and then releasing it represe...The tethered satellite system has a great potential and one of its very useful applications is momentum transfer. Raising a payload by deploying it upward from an orbitor on a long tether and then releasing it represents a rather important possible application with significant fael economy. This paper presents a dynamic model set up for a two body tethered satellite system and two control laws of deployment used to simulate the deployment of the system, gives calculation formulas for six orbital elements of two sub satellites and discusses calculation examples.展开更多
A dual-guided photonic crystal fiber(PCF) with low and flattened dispersion is designed, which can support a large number of orbital angular momentum(OAM) modes. The properties of the proposed PCF are systematically a...A dual-guided photonic crystal fiber(PCF) with low and flattened dispersion is designed, which can support a large number of orbital angular momentum(OAM) modes. The properties of the proposed PCF are systematically analyzed through the finite element method. The results show that the proposed PCF can support up to 84 OAM modes with 600 nm bandwidth ranging from 1000 to1600 nm. All values of mode purity are above 91.7%, the isolation parameters are larger than 67 dB and the maximum value up to 145 dB, the lowest confinement loss is only 5×10^(-13) dB·m^(-1).More importantly, the values of dispersion for all modes are less than 40 ps·km-1·nm-1, and the lowest dispersion variation is only 0.7 ps·km^(-1)·nm^(-1). These superior optical properties make the proposed PCF have great advantage in stable transmissions of data and long-distance optical fiber communication system with large capacity.展开更多
基金The project supported by the National Natural Science Foundation of China(10202008)Specialized Research Fund for the Doctoral Program of Higher Education(20020003024)
文摘In this paper, the relative orbital configurations of satellites in formation flying with non-perturbation and J<SUB>2</SUB> perturbation are studied, and an orbital elements method is proposed to obtain the relative orbital configurations of satellites in formation. Firstly, under the condition of non-perturbation, we obtain many shapes of relative orbital configurations when the semi-major axes of satellites are equal. These shapes can be lines, ellipses or distorted closed curves. Secondly, on the basis of the analysis of J<SUB>2</SUB> effect on relative orbital configurations, we find out that J<SUB>2</SUB> effect can induce two kinds of changes of relative orbital configurations. They are distortion and drifting, respectively. In addition, when J<SUB>2</SUB> perturbation is concerned, we also find that the semi-major axes of the leading and following satellites should not be the same exactly in order to decrease the J<SUB>2</SUB> effect. The relationship of relative orbital elements and J<SUB>2</SUB> effect is obtained through simulations. Finally, the minimum relation perturbation conditions are established in order to reduce the influence of the J<SUB>2</SUB> effect. The results show that the minimum relation perturbation conditions can reduce the J<SUB>2</SUB> effect significantly when the orbital element differences are small enough, and they can become rules for the design of satellite formation flying.
基金Supported by the National Natural Science Foundation of China(No.82060181)General Project funded by the Jiangxi Provincial Department of Education(No.GJJ2200194).
文摘AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using Mimics21.0 software.The repair guide plate model for inferior orbital wall fracture was designed using 3-matic13.0 and Geomagic wrap 21.0 software.The finite element model of orbital blowout fracture and absorbable repair plate was established using 3-matic13.0 and ANSYS Workbench 21.0 software.The mechanical response of absorbable plates,with thicknesses of 0.6 and 1.2 mm,was modeled after their placement in the orbit.Two patients with inferior orbital wall fractures volunteered to receive single-layer and double-layer absorbable plates combined with 3D printing technology to facilitate surgical treatment of orbital wall fractures.RESULTS:The finite element models of orbital blowout fracture and absorbable plate were successfully established.Finite element analysis(FEA)showed that when the Young’s modulus of the absorbable plate decreases to 3.15 MPa,the repair material with a thickness of 0.6 mm was influenced by the gravitational forces of the orbital contents,resulting in a maximum total deformation of approximately 3.3 mm.Conversely,when the absorbable plate was 1.2 mm thick,the overall maximum total deformation was around 0.4 mm.The half-year follow-up results of the clinical cases confirmed that the absorbable plate with a thickness of 1.2 mm had smaller maximum total deformation and better clinical efficacy.CONCLUSION:The biomechanical analysis observations in this study are largely consistent with the clinical situation.The use of double-layer absorbable plates in conjunction with 3D printing technology is recommended to support surgical treatment of infraorbital wall blowout fractures.
基金Acknowledgements We would like to thank Drs. Jun Liu and Lei Chen for the stimulating discussions. We would also like to acknowledge the support of the National Natural Science Foundation of China (No. 11374004) and the Science and Technology Development Program of Jilin Province of China (No. 20150519021JH). Z. W. also acknowledges the Fok Ying Tung Education Foundation (No. 142001) and High Performance Computing Center of Jilin University.
文摘Actinide elements encaged in a superatomic cluster can exhibit unique properties due to their hyperactive valence electrons. Herein, the electronic and spectroscopic properties of Th@Au14 are predicted and compared with that of the isoelectronic entities [Ac@Au14]- and [Pa@Au14]+ using density functional theory. The calculation results indicate that these clusters all adopt a closed- shell superatomic 18-electron configuration of the 1S21p61D10 Jellium state. The absorption spectrum of Th@Au14 can be interpreted by the Jelliumatic orbital model. In addition, calculated spectra of pyridine-Th@Au14 complexes in the blue laser band exhibit strong peaks attributable to charge transfer (CT) from the metal to the pyridine molecule. These charge-transfer bands lead to a resonant surface-enhanced Raman scattering (SERS) enhancement of -104. This work suggests a basis for designing and synthesizing SERS substrate materials based on actinide-embedded gold superatom models.
文摘The tethered satellite system has a great potential and one of its very useful applications is momentum transfer. Raising a payload by deploying it upward from an orbitor on a long tether and then releasing it represents a rather important possible application with significant fael economy. This paper presents a dynamic model set up for a two body tethered satellite system and two control laws of deployment used to simulate the deployment of the system, gives calculation formulas for six orbital elements of two sub satellites and discusses calculation examples.
基金the Fundamental Research Funds for the Central Universities(2020YJ005,2021MS072,2019MS085)the Natural Science Foundation of Hebei Province(E2019502177,E2020502010)the National Natural Science Foundation of China(51607066,61775057)。
文摘A dual-guided photonic crystal fiber(PCF) with low and flattened dispersion is designed, which can support a large number of orbital angular momentum(OAM) modes. The properties of the proposed PCF are systematically analyzed through the finite element method. The results show that the proposed PCF can support up to 84 OAM modes with 600 nm bandwidth ranging from 1000 to1600 nm. All values of mode purity are above 91.7%, the isolation parameters are larger than 67 dB and the maximum value up to 145 dB, the lowest confinement loss is only 5×10^(-13) dB·m^(-1).More importantly, the values of dispersion for all modes are less than 40 ps·km-1·nm-1, and the lowest dispersion variation is only 0.7 ps·km^(-1)·nm^(-1). These superior optical properties make the proposed PCF have great advantage in stable transmissions of data and long-distance optical fiber communication system with large capacity.