Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) proces...Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) process was conducted based on Taguchi experimental design. L16(45) orthogonal experiments were carried out with feed inlet temperature,permeate stream inlet temperature,flow rate,module packing density and length-diameter ratio as optimization parameters and with permeate flux,water productivity per unit volume of module and water production per unit exergy loss separately as optimization objectives. By using range analysis method,the dominance degree of the various influencing factors for the three objectives was analyzed and the optimum condition was obtained for the three objectives separately. Furthermore,the multi-objectives optimization was performed based on a weight grade method. The combined optimum conditions are feed inlet temperature 75℃,packing density 30% ,length-diameter ratio 10,permeate stream inlet temperature 30 ℃ and flow rate 25 L/h,which is in order of their dominance degree,and the validity of the optimization scheme was confirmed.展开更多
文摘Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) process was conducted based on Taguchi experimental design. L16(45) orthogonal experiments were carried out with feed inlet temperature,permeate stream inlet temperature,flow rate,module packing density and length-diameter ratio as optimization parameters and with permeate flux,water productivity per unit volume of module and water production per unit exergy loss separately as optimization objectives. By using range analysis method,the dominance degree of the various influencing factors for the three objectives was analyzed and the optimum condition was obtained for the three objectives separately. Furthermore,the multi-objectives optimization was performed based on a weight grade method. The combined optimum conditions are feed inlet temperature 75℃,packing density 30% ,length-diameter ratio 10,permeate stream inlet temperature 30 ℃ and flow rate 25 L/h,which is in order of their dominance degree,and the validity of the optimization scheme was confirmed.