This paper considers the optimal traffic signal setting for an urban arterial road. By introducing the concepts of synchronization rate and non-synchronization degree, a mathematical model is constructed and an optimi...This paper considers the optimal traffic signal setting for an urban arterial road. By introducing the concepts of synchronization rate and non-synchronization degree, a mathematical model is constructed and an optimization problem is posed. Then, a new iterative algorithm is developed to solve this optimal traffic control signal setting problem. Convergence properties for this iterative algorithm are established. Finally, a numerical example is solved to illustrate the effectiveness of the method.展开更多
This paper presents a distributed optimization strategy for large-scale traffic network based on fog computing. Different from the traditional cloud-based centralized optimization strategy, the fog-based distributed o...This paper presents a distributed optimization strategy for large-scale traffic network based on fog computing. Different from the traditional cloud-based centralized optimization strategy, the fog-based distributed optimization strategy distributes its computing tasks to individual sub-processors, thus significantly reducing computation time. A traffic model is built and a series of communication rules between subsystems are set to ensure that the entire transportation network can be globally optimized while the subsystem is achieving its local optimization. Finally, this paper numerically simulates the operation of the traffic network by mixed-Integer programming, also, compares the advantages and disadvantages of the two optimization strategies.展开更多
基金Supported by the National Natural Science Foundation of China (10671045)
文摘This paper considers the optimal traffic signal setting for an urban arterial road. By introducing the concepts of synchronization rate and non-synchronization degree, a mathematical model is constructed and an optimization problem is posed. Then, a new iterative algorithm is developed to solve this optimal traffic control signal setting problem. Convergence properties for this iterative algorithm are established. Finally, a numerical example is solved to illustrate the effectiveness of the method.
基金supported by the Natural Science Foundation of China under Grant 61873017 and Grant 61473016in part by the Beijing Natural Science Foundation under Grant Z180005supported in part by the National Research Foundation of South Africa under Grant 113340in part by the Oppenheimer Memorial Trust Grant
文摘This paper presents a distributed optimization strategy for large-scale traffic network based on fog computing. Different from the traditional cloud-based centralized optimization strategy, the fog-based distributed optimization strategy distributes its computing tasks to individual sub-processors, thus significantly reducing computation time. A traffic model is built and a series of communication rules between subsystems are set to ensure that the entire transportation network can be globally optimized while the subsystem is achieving its local optimization. Finally, this paper numerically simulates the operation of the traffic network by mixed-Integer programming, also, compares the advantages and disadvantages of the two optimization strategies.