Near-space airship is a frontier and hotspot in current military research and development,and the near-space composite propeller is the key technology for its development.In order to obtain higher aerodynamic efficien...Near-space airship is a frontier and hotspot in current military research and development,and the near-space composite propeller is the key technology for its development.In order to obtain higher aerodynamic efficiency at an altitude of 22 km,a certain near-space composite propeller is designed as a long and slender aerodynamic shape with a 10 m diameter,which brings many challenges to the composite structure design.The initial design is obtained by the composite structure variable stiffness design method using based on fixed region division blending model.However,it weighs 23.142 kg,exceeding the required 20 kg.In order to meet the structural design requirements of the propeller,a variable stiffness design method using the adaptive region division blending model is proposed in this paper.Compared with the methods using the fixed region division blending model,this method optimizes region division,stacking thickness and stacking sequence in a single level,considering the coupling effect among them.Through a more refined region division,this method can provide a more optimal design for composite tapered structures.Additionally,to improve the efficiency of optimization subjected to manufacturing constraints,a hierarchical penalty function is proposed to quickly filter out the solutions that do not meet manufacturing constraints.The above methods combined with a Genetic Algorithm(GA)using specific encoding are adopted to optimize the near-space composite propeller.The optimal design of the structure weighs 18.831 kg,with all manufacturing constraints and all structural response constraints being satisfied.Compared with the initial design,the optimal design has a more refined region division,and achieves a weight reduction of 18.6%.This demonstrates that a refined region division can significantly improve the mechanical performance of the composite tapered structure.展开更多
Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mizati...Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mization and motion planning, a phase-division-based linkage-optimization model for a drawing servo press is established. Considering the motion-planning principles of a drawing servo press, and taking account of work rating and efficiency, the constraints of the optimization model are constructed. Linkage is optimized in two modes: use of either constant eccentric speed or constant slide speed in the work segments. The performances of optimized link- ages are compared with those of a mature linkage SL4- 2000A, which is optimized by a traditional method. The results show that the work rating of a drawing servo press equipped with linkages optimized by this new method improved and the root-mean-square torque of the servo motors is reduced by more than 10%. This research pro- vides a promising method for designing energy-saving drawing servo presses with high work ratings.展开更多
For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but faul...For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but fault tolerance and energy balancing gives equal importance for improving the network lifetime.For saving energy in WSNs,clustering is considered as one of the effective methods for Wireless Sensor Networks.Because of the excessive overload,more energy consumed by cluster heads(CHs)in a cluster based WSN to receive and aggregate the information from member sensor nodes and it leads to failure.For increasing the WSNs’lifetime,the CHs selection has played a key role in energy consumption for sensor nodes.An Energy Efficient Unequal Fault Tolerant Clustering Approach(EEUFTC)is proposed for reducing the energy utilization through the intelligent methods like Particle Swarm Optimization(PSO).In this approach,an optimal Master Cluster Head(MCH)-Master data Aggregator(MDA),selection method is proposed which uses the fitness values and they evaluate based on the PSO for two optimal nodes in each cluster to act as Master Data Aggregator(MDA),and Master Cluster Head.The data from the cluster members collected by the chosen MCH exclusively and the MDA is used for collected data reception from MCH transmits to the BS.Thus,the MCH overhead reduces.During the heavy communication of data,overhead controls using the scheduling of Energy-Efficient Time Division Multiple Access(EE-TDMA).To describe the proposed method superiority based on various performance metrics,simulation and results are compared to the existing methods.展开更多
基金This study was co-supported by stable funding from the National Key Laboratory of Aerofoil and Grille Aerodynamics,China.
文摘Near-space airship is a frontier and hotspot in current military research and development,and the near-space composite propeller is the key technology for its development.In order to obtain higher aerodynamic efficiency at an altitude of 22 km,a certain near-space composite propeller is designed as a long and slender aerodynamic shape with a 10 m diameter,which brings many challenges to the composite structure design.The initial design is obtained by the composite structure variable stiffness design method using based on fixed region division blending model.However,it weighs 23.142 kg,exceeding the required 20 kg.In order to meet the structural design requirements of the propeller,a variable stiffness design method using the adaptive region division blending model is proposed in this paper.Compared with the methods using the fixed region division blending model,this method optimizes region division,stacking thickness and stacking sequence in a single level,considering the coupling effect among them.Through a more refined region division,this method can provide a more optimal design for composite tapered structures.Additionally,to improve the efficiency of optimization subjected to manufacturing constraints,a hierarchical penalty function is proposed to quickly filter out the solutions that do not meet manufacturing constraints.The above methods combined with a Genetic Algorithm(GA)using specific encoding are adopted to optimize the near-space composite propeller.The optimal design of the structure weighs 18.831 kg,with all manufacturing constraints and all structural response constraints being satisfied.Compared with the initial design,the optimal design has a more refined region division,and achieves a weight reduction of 18.6%.This demonstrates that a refined region division can significantly improve the mechanical performance of the composite tapered structure.
基金Supported by National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2015ZX04003004)
文摘Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mization and motion planning, a phase-division-based linkage-optimization model for a drawing servo press is established. Considering the motion-planning principles of a drawing servo press, and taking account of work rating and efficiency, the constraints of the optimization model are constructed. Linkage is optimized in two modes: use of either constant eccentric speed or constant slide speed in the work segments. The performances of optimized link- ages are compared with those of a mature linkage SL4- 2000A, which is optimized by a traditional method. The results show that the work rating of a drawing servo press equipped with linkages optimized by this new method improved and the root-mean-square torque of the servo motors is reduced by more than 10%. This research pro- vides a promising method for designing energy-saving drawing servo presses with high work ratings.
基金The authors would like to thank for the support from Taif University Researchers Supporting Project number(TURSP-2020/239),Taif University,Taif,Saudi Arabia.
文摘For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but fault tolerance and energy balancing gives equal importance for improving the network lifetime.For saving energy in WSNs,clustering is considered as one of the effective methods for Wireless Sensor Networks.Because of the excessive overload,more energy consumed by cluster heads(CHs)in a cluster based WSN to receive and aggregate the information from member sensor nodes and it leads to failure.For increasing the WSNs’lifetime,the CHs selection has played a key role in energy consumption for sensor nodes.An Energy Efficient Unequal Fault Tolerant Clustering Approach(EEUFTC)is proposed for reducing the energy utilization through the intelligent methods like Particle Swarm Optimization(PSO).In this approach,an optimal Master Cluster Head(MCH)-Master data Aggregator(MDA),selection method is proposed which uses the fitness values and they evaluate based on the PSO for two optimal nodes in each cluster to act as Master Data Aggregator(MDA),and Master Cluster Head.The data from the cluster members collected by the chosen MCH exclusively and the MDA is used for collected data reception from MCH transmits to the BS.Thus,the MCH overhead reduces.During the heavy communication of data,overhead controls using the scheduling of Energy-Efficient Time Division Multiple Access(EE-TDMA).To describe the proposed method superiority based on various performance metrics,simulation and results are compared to the existing methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272034,11921002,12002184)the Fundamental Research Funds for the Central Universities(Grant No.501LKQB2022105038)the Australian Research Council(Grant Nos.DE200100887,FL190100014).