This study advances the G-stochastic maximum principle(G-SMP)from a risk-neutral framework to a risk-sensitive one.A salient feature of this advancement is its applicability to systems governed by stochastic different...This study advances the G-stochastic maximum principle(G-SMP)from a risk-neutral framework to a risk-sensitive one.A salient feature of this advancement is its applicability to systems governed by stochastic differential equations under G-Brownian motion(G-SDEs),where the control variable may influence all terms.We aim to generalize our findings from a risk-neutral context to a risk-sensitive performance cost.Initially,we introduced an auxiliary process to address risk-sensitive performance costs within the G-expectation framework.Subsequently,we established and validated the correlation between the G-expected exponential utility and the G-quadratic backward stochastic differential equation.Furthermore,we simplified the G-adjoint process from a dual-component structure to a singular component.Moreover,we explained the necessary optimality conditions for this model by considering a convex set of admissible controls.To describe the main findings,we present two examples:the first addresses the linear-quadratic problem and the second examines a Merton-type problem characterized by power utility.展开更多
As wind farms are commonly installed in areas with abundant wind resources,spatial dependence of wind speed among nearby wind farms should be considered when modeling a power system with large-scale wind power.In this...As wind farms are commonly installed in areas with abundant wind resources,spatial dependence of wind speed among nearby wind farms should be considered when modeling a power system with large-scale wind power.In this paper,a novel bivariate non-parametric copula,and a bivariate diffusive kernel(BDK)copula are proposed to formulate the dependence between random variables.BDK copula is then applied to higher dimension using the pair-copula method and is named as pair diffusive kernel(PDK)copula,offering flexibility to formulate the complicated dependent structure of multiple random variables.Also,a quasi-Monte Carlo method is elaborated in the sampling procedure based on the combination of the Sobol sequence and the Rosen-blatt transformation of the PDK copula,to generate correlated wind speed samples.The proposed method is applied to solve probabilistic optimal power flow(POPF)problems.The effectiveness of the BDK copula is validated in copula definitions.Then,three different data sets are used in various goodness-of-fit tests to verify the superior performance of the PDK copula,which facilitates in formulating the dependence structure of wind speeds at different wind farms.Furthermore,samples obtained from the PDK copula are used to solve POPF problems,which are modeled on three modified IEEE 57-bus power systems.Compared to the Gaussian,T,and parametric-pair copulas,the results obtained from the PDK copula are superior in formulating the complicated dependence,thus solving POPF problems.展开更多
基金supported by PRFU project N(Grant No.C00L03UN070120220004).
文摘This study advances the G-stochastic maximum principle(G-SMP)from a risk-neutral framework to a risk-sensitive one.A salient feature of this advancement is its applicability to systems governed by stochastic differential equations under G-Brownian motion(G-SDEs),where the control variable may influence all terms.We aim to generalize our findings from a risk-neutral context to a risk-sensitive performance cost.Initially,we introduced an auxiliary process to address risk-sensitive performance costs within the G-expectation framework.Subsequently,we established and validated the correlation between the G-expected exponential utility and the G-quadratic backward stochastic differential equation.Furthermore,we simplified the G-adjoint process from a dual-component structure to a singular component.Moreover,we explained the necessary optimality conditions for this model by considering a convex set of admissible controls.To describe the main findings,we present two examples:the first addresses the linear-quadratic problem and the second examines a Merton-type problem characterized by power utility.
基金supported by Key-Area Research and Development Program of Guangdong Province(No.2020B010166004)the National Natural Science Foundation of China(No.52077081).
文摘As wind farms are commonly installed in areas with abundant wind resources,spatial dependence of wind speed among nearby wind farms should be considered when modeling a power system with large-scale wind power.In this paper,a novel bivariate non-parametric copula,and a bivariate diffusive kernel(BDK)copula are proposed to formulate the dependence between random variables.BDK copula is then applied to higher dimension using the pair-copula method and is named as pair diffusive kernel(PDK)copula,offering flexibility to formulate the complicated dependent structure of multiple random variables.Also,a quasi-Monte Carlo method is elaborated in the sampling procedure based on the combination of the Sobol sequence and the Rosen-blatt transformation of the PDK copula,to generate correlated wind speed samples.The proposed method is applied to solve probabilistic optimal power flow(POPF)problems.The effectiveness of the BDK copula is validated in copula definitions.Then,three different data sets are used in various goodness-of-fit tests to verify the superior performance of the PDK copula,which facilitates in formulating the dependence structure of wind speeds at different wind farms.Furthermore,samples obtained from the PDK copula are used to solve POPF problems,which are modeled on three modified IEEE 57-bus power systems.Compared to the Gaussian,T,and parametric-pair copulas,the results obtained from the PDK copula are superior in formulating the complicated dependence,thus solving POPF problems.