为了解决Criminisi算法在图像修复过程中无法保证修复块的优先级顺序,从而导致修复质量不佳的问题,提出了方差约束因子耦合搜索区域判定模型的图像修复算法.首先,将待修复块分割为两个子块,通过子块的方差构建方差约束因子,并利用方差...为了解决Criminisi算法在图像修复过程中无法保证修复块的优先级顺序,从而导致修复质量不佳的问题,提出了方差约束因子耦合搜索区域判定模型的图像修复算法.首先,将待修复块分割为两个子块,通过子块的方差构建方差约束因子,并利用方差约束因子改进Criminisi算法中的优先权函数;然后,在二维直角坐标系中对损坏区域进行测量,根据测量结果选取损坏基准值,以构建搜索区域判定模型,确定最优匹配块的搜索范围;最后,引入SSD(Sum of Squared Differences)模型在搜索区域中选取最优匹配块,利用最优匹配块中像素点与待修复块中对应像素点的像素差值构造置信度更新模型,对置信度进行更新,实现图像的修复.实验结果表明,与其他图像修复算法相比,本文算法具有更好的图像修复视觉质量.展开更多
文摘为了解决Criminisi算法在图像修复过程中无法保证修复块的优先级顺序,从而导致修复质量不佳的问题,提出了方差约束因子耦合搜索区域判定模型的图像修复算法.首先,将待修复块分割为两个子块,通过子块的方差构建方差约束因子,并利用方差约束因子改进Criminisi算法中的优先权函数;然后,在二维直角坐标系中对损坏区域进行测量,根据测量结果选取损坏基准值,以构建搜索区域判定模型,确定最优匹配块的搜索范围;最后,引入SSD(Sum of Squared Differences)模型在搜索区域中选取最优匹配块,利用最优匹配块中像素点与待修复块中对应像素点的像素差值构造置信度更新模型,对置信度进行更新,实现图像的修复.实验结果表明,与其他图像修复算法相比,本文算法具有更好的图像修复视觉质量.