The mass entransy describes the mass-diffusion ability of the solution system, and the mass-diffusion process with the finite concentration difference always leads to the mass-entransy dissipation. This paper studies ...The mass entransy describes the mass-diffusion ability of the solution system, and the mass-diffusion process with the finite concentration difference always leads to the mass-entransy dissipation. This paper studies the equimolar reverse constant-temperature mass-diffusion process with Fick's law( g∝Δ(c)). The optimal concentration paths for the MED(Minimum Entransy Dissipation) are derived and compared with those for the MEG(Minimum Entropy Generation) and CCR(Constant Concentration Ratio) operations. It is indicated that the strategy of the MED is equivalent to that of the CCD(Constant Concentration Difference) of the same component; whether the MED or the MEG is selected as the optimization objective, the strategy of the CCD is much better than that of the CCR.展开更多
The optimization system, which was the subject of our study, is an autonomous chain for the automatic management of cyanide consumption. It is in the phase of industrial automation which made it possible to use the ma...The optimization system, which was the subject of our study, is an autonomous chain for the automatic management of cyanide consumption. It is in the phase of industrial automation which made it possible to use the machines in order to reduce the workload of the worker while keeping a high productivity and a quality in great demand. Furthermore, the use of cyanide in leaching tanks is a necessity in the gold recovery process. This consumption of cyanide must be optimal in these tanks in order to have a good recovery while controlling the concentration of cyanide. Cyanide is one of the most expensive products for mining companies. On a completely different note, we see huge variations during the addition of cyanide. Following a recommendation from the metallurgical and operations teams, the control team carried out an analysis of the problem while proposing a solution to reduce the variability around plus or minus 10% of the addition setpoint through automation. It should be noted that this automatic optimization by monitoring the concentration of cyanide, made use of industrial automation which is a technique which ensures the operation of the ore processing chain without human intervention. In other words, it made it possible to substitute a machine for man. So, this leads us to conduct a study on concentration levels in the real world. The results show that the analysis of the modeling of the cyanide consumption optimization system is an appropriate solution to eradicate failures in the mineral processing chain. The trend curves demonstrate this resolution perfectly.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51576207 & 51356001)
文摘The mass entransy describes the mass-diffusion ability of the solution system, and the mass-diffusion process with the finite concentration difference always leads to the mass-entransy dissipation. This paper studies the equimolar reverse constant-temperature mass-diffusion process with Fick's law( g∝Δ(c)). The optimal concentration paths for the MED(Minimum Entransy Dissipation) are derived and compared with those for the MEG(Minimum Entropy Generation) and CCR(Constant Concentration Ratio) operations. It is indicated that the strategy of the MED is equivalent to that of the CCD(Constant Concentration Difference) of the same component; whether the MED or the MEG is selected as the optimization objective, the strategy of the CCD is much better than that of the CCR.
文摘The optimization system, which was the subject of our study, is an autonomous chain for the automatic management of cyanide consumption. It is in the phase of industrial automation which made it possible to use the machines in order to reduce the workload of the worker while keeping a high productivity and a quality in great demand. Furthermore, the use of cyanide in leaching tanks is a necessity in the gold recovery process. This consumption of cyanide must be optimal in these tanks in order to have a good recovery while controlling the concentration of cyanide. Cyanide is one of the most expensive products for mining companies. On a completely different note, we see huge variations during the addition of cyanide. Following a recommendation from the metallurgical and operations teams, the control team carried out an analysis of the problem while proposing a solution to reduce the variability around plus or minus 10% of the addition setpoint through automation. It should be noted that this automatic optimization by monitoring the concentration of cyanide, made use of industrial automation which is a technique which ensures the operation of the ore processing chain without human intervention. In other words, it made it possible to substitute a machine for man. So, this leads us to conduct a study on concentration levels in the real world. The results show that the analysis of the modeling of the cyanide consumption optimization system is an appropriate solution to eradicate failures in the mineral processing chain. The trend curves demonstrate this resolution perfectly.