An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10-16. To measure it...An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10-16. To measure its absolute frequency with respect to NIM's cesium fountain clock NIM5, the frequency of a flywheel H-maser of NIM5 is transferred to the Sr laboratory through a 50-kin-long fiber. reference frequency of this H-maser, is used for the optical this Sr clock is measured to be 429228004229873.7(1.4)Hz. A fiber optical frequency comb, phase-locked to the frequency measurement. The absolute frequency of展开更多
We report the 87Sr optical lattice clock developed at the National Time Service Center. We achieved a closed-loop operation of the optical lattice clock based on 87Sr atoms. The linewidth of the spin-polarized clock p...We report the 87Sr optical lattice clock developed at the National Time Service Center. We achieved a closed-loop operation of the optical lattice clock based on 87Sr atoms. The linewidth of the spin-polarized clock peak is 3.9 Hz with a clock laser pulse length of 300 ms, which corresponds to a Fourier-limited linewidth of 3 Hz. The fitting of the in-loop error signal data shows that the instability is approximately 5 × 10 15τ-1/2, affected primarily by the white noise. The fractional frequency difference averages down to 5.7 × 10 ^-17 for an averaging time of 3000 s.展开更多
We report a transportable one-dimensional optical lattice clock based on 87Sr at the National Time Service Center.The transportable apparatus consists of a compact vacuum system and compact optical subsystems.The vacu...We report a transportable one-dimensional optical lattice clock based on 87Sr at the National Time Service Center.The transportable apparatus consists of a compact vacuum system and compact optical subsystems.The vacuum system with a size of 90 cm×20 cm×42 cm and the beam distributors are assembled on a double-layer optical breadboard.The modularized optical subsystems are integrated on independent optical breadboards.By using a 230 ms clock laser pulse,spin-polarized spectroscopy with a linewidth of 4.8 Hz is obtained which is close to the 3.9 Hz Fourier-limit linewidth.The time interleaved self-comparison frequency instability is determined to be 6.3 × 10^-17 at an averaging time of 2000 s.展开更多
Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external...Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external infrared electromagnetic wave disturbances can be responded to.Utilizing the ac Stark shift of the clock transition,we propose a new method to detect infrared signals.According to our calculations,the theoretical detection accuracy in the vicinity of its resonance band of 2.6μm can reach the order of 10-14W,while the minimum detectable signal of common detectors is on the order of 10^(-10)W.展开更多
The study of magnetic field effects on the clock transition of Mg and Cd optical lattice clocks is scarce.In this work,the hyperfine-induced Landég-factors and quadratic Zeeman shift coefficients of the nsnp ^(3)...The study of magnetic field effects on the clock transition of Mg and Cd optical lattice clocks is scarce.In this work,the hyperfine-induced Landég-factors and quadratic Zeeman shift coefficients of the nsnp ^(3)P_(0)^(o) clock states for ^(111,113)Cd and ^(25)Mg were calculated by using the multi-configuration Dirac–Hartree–Fock theory.To obtain accurate values of these parameters,the impact of electron correlations and furthermore the Breit interaction and quantum electrodynamical effects on the Zeeman and hyperfine interaction matrix elements,and energy separations were investigated in detail.We also estimated the contributions from perturbing states to the Landég-factors and quadratic Zeeman shift coefficients concerned so as to truncate the summation over the perturbing states without loss of accuracy.Our calculations provide important data for estimating the first-and second-order Zeeman shifts of the clock transition for the Cd and Mg optical lattice clocks.展开更多
We present a precise measurement of171Yb magnetic constants for 1S_(0)-3P_(0) clock transition. The background magnetic field is firstly compensated to < 1 m Gs(1 Gs = 10^(-4)T) through measuring the splitting of t...We present a precise measurement of171Yb magnetic constants for 1S_(0)-3P_(0) clock transition. The background magnetic field is firstly compensated to < 1 m Gs(1 Gs = 10^(-4)T) through measuring the splitting of two π transitins of171Yb clock transition at different compensation coils currents. Then, the splitting ratios of the π and σ components of171Yb clock transition at different bias magnetic fields are measured, and the first-order Zeeman coefficient is determined to beα = 199.49(5) Hz/Gs. The second-order Zeeman shifts at various bias magnetic fields are also measured through interleaved self-comparison in which the bias magnetic fields are modulated between high and low values. The second-order Zeeman coefficient is fitted to be β =-6.09(3) Hz/m T^(2), which is consistent with the result of NIST group.展开更多
An optical atomic clock with 171yb atoms is devised and tested. By using a two-stage Doppler cooling technique, the 171Yb atoms are cooled down to a temperature of 6 ± 3 μK, which is close to the Doppler limit. ...An optical atomic clock with 171yb atoms is devised and tested. By using a two-stage Doppler cooling technique, the 171Yb atoms are cooled down to a temperature of 6 ± 3 μK, which is close to the Doppler limit. Then, the cold 171Yb atoms are loaded into a one-dimensional optical lattice with a wavelength of 759 nm in the Lamb-Dicke regime. Furthermore, these cold 171yb atoms are excited from the ground-state 1S0 to the excited-state 3P0 by a clock laser with a wavelength of 578 nm. Finally, the 1S0-3P0 clock-transition spectrum of these 171yb atoms is obtained by measuring the dependence of the population of the ground-state 1 S0 upon the clock-laser detuning.展开更多
We report a longitudinal Zeeman slower based on ring-shaped permanent magnetic dipoles used for the strontium optical lattice clock. The Zeeman slower is composed of 40 permanent magnets with the same outer diameter b...We report a longitudinal Zeeman slower based on ring-shaped permanent magnetic dipoles used for the strontium optical lattice clock. The Zeeman slower is composed of 40 permanent magnets with the same outer diameter but different inner diameters. The maximum variation of the axial field from its target values is less than 2%. In most parts of the Zeeman slower, the intensity variations of the field in radial spatial distribution are less than 0.1 roT. With this Zeeman slower, the strontium atoms are slowed down to 95m/s, and approximately 2% of the total atoms are slowed down to less than 50m/s.展开更多
The optical Ramsey spectrum is experimentally realized in an ^(87)Sr optical lattice clock, and the measured linewidth agrees well with theoretical expectation. The coherence time between the clock laser and the atoms...The optical Ramsey spectrum is experimentally realized in an ^(87)Sr optical lattice clock, and the measured linewidth agrees well with theoretical expectation. The coherence time between the clock laser and the atoms, which indicates the maximum free evolution period of using Ramsey detection to measure the atom-laser phase information, is determined as 340(23) ms by measuring the fringe contrasts of the Ramsey spectrum as a function of the free evolution period. Furthermore, with the same clock duty cycle of about 0.1, the clock stability is measured by using the Ramsey and Rabi spectra,respectively. The experimental and theoretical results show approximately the same stability as the two detection methods, which indicates that Ramsey detection cannot obviously improve the clock stability until the clock duty cycle is large enough. Thus, it is of great significance to choose the detection method of a specific clock.展开更多
We report on the magic wavelength measurement of our optical lattice clock based on fermion strontium atoms at the National Institute of Metrology (NIM). A Ti:sapphire solid state laser locked to a reference cavity...We report on the magic wavelength measurement of our optical lattice clock based on fermion strontium atoms at the National Institute of Metrology (NIM). A Ti:sapphire solid state laser locked to a reference cavity inside a temperature-stabilized vacuum chamber is employed to generate the optical lattice. The laser frequency is measured by an erbium fiber frequency comb. The trap depth is modulated by varying the lattice laser power via an acousto-optic modulator. We obtain the frequency shift coefficient at this lattice wavelength by measuring the diffbrential frequency shift of the clock transition of the strontium atoms at different trap depths, and the frequency shift coefficient at this lattice wavelength is obtained. We measure the frequency shift coefficients at different lattice frequencies around the magic wavelength and linearly fit the measurement data, and the magic wavelength is calculated to be 368554672(44)MHz.展开更多
Wavelength-dependent AC Stark shifts and magic wavelengths of the terahertz clock transitions between the metastable triplet states 6s5d3D1 and 6s5d3D2are investigated with considering the optical lattice trapping of ...Wavelength-dependent AC Stark shifts and magic wavelengths of the terahertz clock transitions between the metastable triplet states 6s5d3D1 and 6s5d3D2are investigated with considering the optical lattice trapping of barium atoms with the linearly polarized laser. The trap depths and the slopes of light shift difference with distinct magic wavelengths of the optical lattices are also discussed in detail. Several potentially suitable working points for the optical lattice trapping laser are recommended and selected from these magic wavelengths.展开更多
In the weak-magnetic-field approximation,we derived an expression of quadratic Zeeman shift coefficient of^(3)P_(0)^(o)clock state for^(88)Sr and^(87)Sr atoms.By using this formula and the multi-configuration Dirac-Ha...In the weak-magnetic-field approximation,we derived an expression of quadratic Zeeman shift coefficient of^(3)P_(0)^(o)clock state for^(88)Sr and^(87)Sr atoms.By using this formula and the multi-configuration Dirac-Hartree-Fock theory,the quadratic Zeeman shift coefficients were calculated.The calculated values C_(2)=-23.38(5)MHz/T^(2) for^(88)Sr and the^(3)p_(0)^(o),F=9/2,M_(F)=±9/2 clock states for^(87)Sr agree well with the other available theoretical and experimental values,especially the most accurate measurement recently.In addition,the calculated values of the^(3)p_(0)^(o),F=9/2,M_(F)=±9/2 clock states were also determined in our^(87)Sr optical lattice clock.The consistency with measurements verifies the validation of our calculation model.Our theory is also useful to evaluate the second-order Zeeman shift of the clock transition,for example,the new proposed^(1)S_(0),F=9/2,M_(F)=±5/2-^(3)P_(0)^(o),F=9/2,M_(F)=±3/2 transitions.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 91336212 and 91436104
文摘An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10-16. To measure its absolute frequency with respect to NIM's cesium fountain clock NIM5, the frequency of a flywheel H-maser of NIM5 is transferred to the Sr laboratory through a 50-kin-long fiber. reference frequency of this H-maser, is used for the optical this Sr clock is measured to be 429228004229873.7(1.4)Hz. A fiber optical frequency comb, phase-locked to the frequency measurement. The absolute frequency of
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474282 and 61775220)the Key Research Project of Frontier Science of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-JSC004)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21030700)
文摘We report the 87Sr optical lattice clock developed at the National Time Service Center. We achieved a closed-loop operation of the optical lattice clock based on 87Sr atoms. The linewidth of the spin-polarized clock peak is 3.9 Hz with a clock laser pulse length of 300 ms, which corresponds to a Fourier-limited linewidth of 3 Hz. The fitting of the in-loop error signal data shows that the instability is approximately 5 × 10 15τ-1/2, affected primarily by the white noise. The fractional frequency difference averages down to 5.7 × 10 ^-17 for an averaging time of 3000 s.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61775220 and 11803042)the Key Research Project of Frontier Science of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-JSC004)the strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21030100).
文摘We report a transportable one-dimensional optical lattice clock based on 87Sr at the National Time Service Center.The transportable apparatus consists of a compact vacuum system and compact optical subsystems.The vacuum system with a size of 90 cm×20 cm×42 cm and the beam distributors are assembled on a double-layer optical breadboard.The modularized optical subsystems are integrated on independent optical breadboards.By using a 230 ms clock laser pulse,spin-polarized spectroscopy with a linewidth of 4.8 Hz is obtained which is close to the 3.9 Hz Fourier-limit linewidth.The time interleaved self-comparison frequency instability is determined to be 6.3 × 10^-17 at an averaging time of 2000 s.
基金Project supported by the National Natural Science Foundation of China (Grant No.12274045)。
文摘Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external infrared electromagnetic wave disturbances can be responded to.Utilizing the ac Stark shift of the clock transition,we propose a new method to detect infrared signals.According to our calculations,the theoretical detection accuracy in the vicinity of its resonance band of 2.6μm can reach the order of 10-14W,while the minimum detectable signal of common detectors is on the order of 10^(-10)W.
基金Project supported by the National Natural Science Foundation of China (Grant No.61775220)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB21030100)the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No.QYZDB-SSW-JSC004)。
文摘The study of magnetic field effects on the clock transition of Mg and Cd optical lattice clocks is scarce.In this work,the hyperfine-induced Landég-factors and quadratic Zeeman shift coefficients of the nsnp ^(3)P_(0)^(o) clock states for ^(111,113)Cd and ^(25)Mg were calculated by using the multi-configuration Dirac–Hartree–Fock theory.To obtain accurate values of these parameters,the impact of electron correlations and furthermore the Breit interaction and quantum electrodynamical effects on the Zeeman and hyperfine interaction matrix elements,and energy separations were investigated in detail.We also estimated the contributions from perturbing states to the Landég-factors and quadratic Zeeman shift coefficients concerned so as to truncate the summation over the perturbing states without loss of accuracy.Our calculations provide important data for estimating the first-and second-order Zeeman shifts of the clock transition for the Cd and Mg optical lattice clocks.
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304402)the National Natural Science Foundation of China (Grant Nos. U20A2075 and 11803072)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100)。
文摘We present a precise measurement of171Yb magnetic constants for 1S_(0)-3P_(0) clock transition. The background magnetic field is firstly compensated to < 1 m Gs(1 Gs = 10^(-4)T) through measuring the splitting of two π transitins of171Yb clock transition at different compensation coils currents. Then, the splitting ratios of the π and σ components of171Yb clock transition at different bias magnetic fields are measured, and the first-order Zeeman coefficient is determined to beα = 199.49(5) Hz/Gs. The second-order Zeeman shifts at various bias magnetic fields are also measured through interleaved self-comparison in which the bias magnetic fields are modulated between high and low values. The second-order Zeeman coefficient is fitted to be β =-6.09(3) Hz/m T^(2), which is consistent with the result of NIST group.
基金supported by the National Basic Research Program of China (Grant Nos. 2012CB821302 and 2010CB922903)the National Natural Science Foundation of China (Grant Nos. 11134003 and 10774044)the Shanghai Excellent Academic Leaders Program of China (Grant No. 12XD1402400)
文摘An optical atomic clock with 171yb atoms is devised and tested. By using a two-stage Doppler cooling technique, the 171Yb atoms are cooled down to a temperature of 6 ± 3 μK, which is close to the Doppler limit. Then, the cold 171Yb atoms are loaded into a one-dimensional optical lattice with a wavelength of 759 nm in the Lamb-Dicke regime. Furthermore, these cold 171yb atoms are excited from the ground-state 1S0 to the excited-state 3P0 by a clock laser with a wavelength of 578 nm. Finally, the 1S0-3P0 clock-transition spectrum of these 171yb atoms is obtained by measuring the dependence of the population of the ground-state 1 S0 upon the clock-laser detuning.
基金Supported by the National Natural Science Foundation of China under Grant No 91336212
文摘We report a longitudinal Zeeman slower based on ring-shaped permanent magnetic dipoles used for the strontium optical lattice clock. The Zeeman slower is composed of 40 permanent magnets with the same outer diameter but different inner diameters. The maximum variation of the axial field from its target values is less than 2%. In most parts of the Zeeman slower, the intensity variations of the field in radial spatial distribution are less than 0.1 roT. With this Zeeman slower, the strontium atoms are slowed down to 95m/s, and approximately 2% of the total atoms are slowed down to less than 50m/s.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61775220)the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100)。
文摘The optical Ramsey spectrum is experimentally realized in an ^(87)Sr optical lattice clock, and the measured linewidth agrees well with theoretical expectation. The coherence time between the clock laser and the atoms, which indicates the maximum free evolution period of using Ramsey detection to measure the atom-laser phase information, is determined as 340(23) ms by measuring the fringe contrasts of the Ramsey spectrum as a function of the free evolution period. Furthermore, with the same clock duty cycle of about 0.1, the clock stability is measured by using the Ramsey and Rabi spectra,respectively. The experimental and theoretical results show approximately the same stability as the two detection methods, which indicates that Ramsey detection cannot obviously improve the clock stability until the clock duty cycle is large enough. Thus, it is of great significance to choose the detection method of a specific clock.
基金Supported by the National Natural Science Foundation of China under Grant No 91336212
文摘We report on the magic wavelength measurement of our optical lattice clock based on fermion strontium atoms at the National Institute of Metrology (NIM). A Ti:sapphire solid state laser locked to a reference cavity inside a temperature-stabilized vacuum chamber is employed to generate the optical lattice. The laser frequency is measured by an erbium fiber frequency comb. The trap depth is modulated by varying the lattice laser power via an acousto-optic modulator. We obtain the frequency shift coefficient at this lattice wavelength by measuring the diffbrential frequency shift of the clock transition of the strontium atoms at different trap depths, and the frequency shift coefficient at this lattice wavelength is obtained. We measure the frequency shift coefficients at different lattice frequencies around the magic wavelength and linearly fit the measurement data, and the magic wavelength is calculated to be 368554672(44)MHz.
基金Project supported by the Science Fund from the Shaanxi Provincial Education Department,China(Grant No.14JK1402)
文摘Wavelength-dependent AC Stark shifts and magic wavelengths of the terahertz clock transitions between the metastable triplet states 6s5d3D1 and 6s5d3D2are investigated with considering the optical lattice trapping of barium atoms with the linearly polarized laser. The trap depths and the slopes of light shift difference with distinct magic wavelengths of the optical lattices are also discussed in detail. Several potentially suitable working points for the optical lattice trapping laser are recommended and selected from these magic wavelengths.
基金Project supported by the National Natural Science Foundation of China(Grant No.61775220)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21030100)+1 种基金the Key Research Project of Frontier Science of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-JSC004)the West Light Foundation of the Chinese Academy of Sciences(Grant No.XAB2018B17)。
文摘In the weak-magnetic-field approximation,we derived an expression of quadratic Zeeman shift coefficient of^(3)P_(0)^(o)clock state for^(88)Sr and^(87)Sr atoms.By using this formula and the multi-configuration Dirac-Hartree-Fock theory,the quadratic Zeeman shift coefficients were calculated.The calculated values C_(2)=-23.38(5)MHz/T^(2) for^(88)Sr and the^(3)p_(0)^(o),F=9/2,M_(F)=±9/2 clock states for^(87)Sr agree well with the other available theoretical and experimental values,especially the most accurate measurement recently.In addition,the calculated values of the^(3)p_(0)^(o),F=9/2,M_(F)=±9/2 clock states were also determined in our^(87)Sr optical lattice clock.The consistency with measurements verifies the validation of our calculation model.Our theory is also useful to evaluate the second-order Zeeman shift of the clock transition,for example,the new proposed^(1)S_(0),F=9/2,M_(F)=±5/2-^(3)P_(0)^(o),F=9/2,M_(F)=±3/2 transitions.