This article considers a wireless network consisting of multiple sources that communicate with the corresponding destination utilizing a single half-duplex relay, whereas, the sources use the relay opportunistically. ...This article considers a wireless network consisting of multiple sources that communicate with the corresponding destination utilizing a single half-duplex relay, whereas, the sources use the relay opportunistically. By integrating the information theory with the concept of effective capacity, this article proposes a dynamic time allocation strategy over the wireless relay network that aims at maximizing the relay network throughput, subject to a given delay quality of service (QoS) constraint, where time division multiple access (TDMA) is applied in the relay network. The simulation results show that the proposed allocation strategy can significantly improve the effective capacity as compared to the traditional equal time allocation strategy.展开更多
基金Shanghai STCSM Project (07dz22023)Shanghai Postdoctoral Scientific Program (07R214158)
文摘This article considers a wireless network consisting of multiple sources that communicate with the corresponding destination utilizing a single half-duplex relay, whereas, the sources use the relay opportunistically. By integrating the information theory with the concept of effective capacity, this article proposes a dynamic time allocation strategy over the wireless relay network that aims at maximizing the relay network throughput, subject to a given delay quality of service (QoS) constraint, where time division multiple access (TDMA) is applied in the relay network. The simulation results show that the proposed allocation strategy can significantly improve the effective capacity as compared to the traditional equal time allocation strategy.