78Li_(2)S-22P_(2)S_(5) are sulfide electrolytes with high lithium-ion conductivity and wide electrochemical windows in the Li_(2)S-P_(2)S_(5) system,making them attractive solid electrolytes for ASSLBs.However,the rol...78Li_(2)S-22P_(2)S_(5) are sulfide electrolytes with high lithium-ion conductivity and wide electrochemical windows in the Li_(2)S-P_(2)S_(5) system,making them attractive solid electrolytes for ASSLBs.However,the role and potential of 78Li_(2)S-22P_(2)S_(5) solid electrolytes over a wide temperature range are still not fully understood.Therefore,we constructed solid-state batteries with NCM622 as the positive electrode and 78Li_(2)S-22P_(2)S_(5) glass-ceramics as the electrolyte to investigate in depth the differences in battery performance over a wide temperature range and their intrinsic mechanisms.The in-situ impedance and relaxation time distribution (DRT) demonstrated the electrochemical stability of the electrolyte over a wide temperature range,while the in-situ stacking pressure observed a large volume change during cycling at 60℃,leading to local solid-solid contact failure and poor cycling stability.This study provides insight into the advantages and problems of 78Li_(2)S-22P_(2)S_(5) in the wide temperature range as well as a basis for the construction of ASSLBs with high energy density and long cycle life.展开更多
基金supported by the National Key Research and Development Program (No. 2021YFB2400300)the National Natural Science Foundation of China (No. 52177214)。
文摘78Li_(2)S-22P_(2)S_(5) are sulfide electrolytes with high lithium-ion conductivity and wide electrochemical windows in the Li_(2)S-P_(2)S_(5) system,making them attractive solid electrolytes for ASSLBs.However,the role and potential of 78Li_(2)S-22P_(2)S_(5) solid electrolytes over a wide temperature range are still not fully understood.Therefore,we constructed solid-state batteries with NCM622 as the positive electrode and 78Li_(2)S-22P_(2)S_(5) glass-ceramics as the electrolyte to investigate in depth the differences in battery performance over a wide temperature range and their intrinsic mechanisms.The in-situ impedance and relaxation time distribution (DRT) demonstrated the electrochemical stability of the electrolyte over a wide temperature range,while the in-situ stacking pressure observed a large volume change during cycling at 60℃,leading to local solid-solid contact failure and poor cycling stability.This study provides insight into the advantages and problems of 78Li_(2)S-22P_(2)S_(5) in the wide temperature range as well as a basis for the construction of ASSLBs with high energy density and long cycle life.