The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous proble...The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous problems of low flux,poor stability,and pollution resistance.Nanocelluloses(cellulose nanocrystals(CNC))with the advantages of hydrophilicity,ecofriendliness,and regeneration are ideal materials for the construction of separation membranes.In this paper,a flexible,antifouling,and durable nanocellulose-based membrane functionalized by block copolymer(poly(N-isopropylacrylamide)-b-poly(N,Ndimethylaminoethyl methacrylate))is prepared via chemical modification and self-assembly,showing high separation efficiency(above 99.6%)for stabilized oil-in-water emulsions,excellent anti-fouling and cycling stability,high-temperature resistance,and acid and alkali resistance.More importantly,the composite membrane has ultra-high flux in separating oil-in-water emulsions(29,003 L·m^(−2)·h^(−1)·bar^(−1))and oil/water mixture(51,444 L·m^(−2)·h^(−1)·bar^(−1)),which ensures high separation efficiency.With its durability,easy scale-up,and green regeneration,we envision this biomass-derived membrane will be an alternative to the existing commercial filter membrane in environmental remediation.展开更多
Large-scale use of detergents to remove oil-fouling in industry continuously generates tremendous amounts of wastewater and thus leads to both economic and environmental problems.To develop recyclable oil-fouling remo...Large-scale use of detergents to remove oil-fouling in industry continuously generates tremendous amounts of wastewater and thus leads to both economic and environmental problems.To develop recyclable oil-fouling removal strategy is an appealing solution but a challenging task.Herein,a kind of dynamic imine-based surfactant has been constructed by 2-formylbenzenesulfonic acid sodium salt(FBSS)and linear amines(CnNH_(2),n=6,7,8,10,and 12).Owing to high interfacial activity and strong assembly ability,dynamic FBSS/C8NH_(2)system can remove oil-fouling on multiple substrates for at least 10 cycles,largely reducing the toxicity to ecosystem.At basic pH,the hierarchical assemblies(from vesicle to network and hollow sphere)are formed and boost surfactant molecule enrichment around oil-fouling,leading to highly efficient emulsification.When pH is changed to acidic condition,the surfactant molecules dissociate due to the breaking of imine bonds,and accordingly the emulsion is destroyed and the released oil droplets float to the top layer.After removing the oil-fouling and adjusting the solution back to basic pH,the surfactant assemblies are reconstructed and used for the next oil-fouling cleaning cycle.This study provides a recyclable,efficient and eco-friendly oil-fouling removal approach,satisfying the need of sustainable development.展开更多
Development of porous materials with anti-fouling and remote controllability is highly desired for oil-water separation application yet still challenging. Herein, to address this challenge, a sponge with unusual super...Development of porous materials with anti-fouling and remote controllability is highly desired for oil-water separation application yet still challenging. Herein, to address this challenge, a sponge with unusual superhydrophilicity/superoleophobicity and magnetic property was fabricated through a dip-coating process. To exploit its superhydrophilic/superoleophobic property, the obtained sponge was used as a reusable water sorbent scaffold to collect water from bulk oils without absorbing any oil. Owing to its magnetic property, the sponge was manipulated remotely by a magnet without touching it directly during the whole water collection process, which could potentially lower the cost of the water collection process. Apart from acting as a water-absorbing material, the sponge can also be used as affiliation material to separate water from oil-water mixture and oil in water emulsion selectively, when fixed into a cone funnel. This research provides a key addition to the field of oil-water separation materials.展开更多
The design and development of new advanced superwetting porous membranes with antioil-fouling performance are still rare and highly desirable because of their potential widespread applications.A metallic phosphate nan...The design and development of new advanced superwetting porous membranes with antioil-fouling performance are still rare and highly desirable because of their potential widespread applications.A metallic phosphate nanoflower-covered mesh membrane with superhydrophilic and unprecedented antioil-fouling properties is prepared by an exceptionally simple and effective in-situ solution corrosion method.As demonstrated,the outstanding antioil-fouling property of the resulting mesh membrane is connected with the special phosphate group and the three-dimensional(3 D) nanoflower structure.Owing to the antioil-fouling property,upon to water,the oil-fouled mesh membrane can keep the surface free of various kinds of oils,including viscous crude oil to light n-hexane.Thanks to its unprecedented self-cleaning property,the superhydrophilic mesh membrane can effectively separate different oil/water mixtures without prior wetted by water,exhibiting great potential for practical spilled oil remediation.展开更多
基金the financial support provided by the National Natural Science Foundation of China(Nos.22108125,21971113,and 22175094)Independent Innovation of Agricultural Science and Technology in Jiangsu Province(Nos.CX(21)3166,and CX(21)3163)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210627)Doctor Project of Mass Entrepreneurship and Innovation in Jiangsu Province(No.JSSCBS20210549)Nanjing Science&Technology Innovation Project for Personnel Studying Abroad and Research Start-up Funding of Nanjing Forestry University(No.163020259)Q.C.Z.appreciates the funding support from City University of Hong Kong and Hong Kong Institute for Advanced Study,City University of Hong Kong.
文摘The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous problems of low flux,poor stability,and pollution resistance.Nanocelluloses(cellulose nanocrystals(CNC))with the advantages of hydrophilicity,ecofriendliness,and regeneration are ideal materials for the construction of separation membranes.In this paper,a flexible,antifouling,and durable nanocellulose-based membrane functionalized by block copolymer(poly(N-isopropylacrylamide)-b-poly(N,Ndimethylaminoethyl methacrylate))is prepared via chemical modification and self-assembly,showing high separation efficiency(above 99.6%)for stabilized oil-in-water emulsions,excellent anti-fouling and cycling stability,high-temperature resistance,and acid and alkali resistance.More importantly,the composite membrane has ultra-high flux in separating oil-in-water emulsions(29,003 L·m^(−2)·h^(−1)·bar^(−1))and oil/water mixture(51,444 L·m^(−2)·h^(−1)·bar^(−1)),which ensures high separation efficiency.With its durability,easy scale-up,and green regeneration,we envision this biomass-derived membrane will be an alternative to the existing commercial filter membrane in environmental remediation.
基金the National Natural Science Foundation of China(Nos.21988102,22072161,and 21773261)the Ministry of Science and Technology of the People’s Republic of China(No.2021YFA0716700).
文摘Large-scale use of detergents to remove oil-fouling in industry continuously generates tremendous amounts of wastewater and thus leads to both economic and environmental problems.To develop recyclable oil-fouling removal strategy is an appealing solution but a challenging task.Herein,a kind of dynamic imine-based surfactant has been constructed by 2-formylbenzenesulfonic acid sodium salt(FBSS)and linear amines(CnNH_(2),n=6,7,8,10,and 12).Owing to high interfacial activity and strong assembly ability,dynamic FBSS/C8NH_(2)system can remove oil-fouling on multiple substrates for at least 10 cycles,largely reducing the toxicity to ecosystem.At basic pH,the hierarchical assemblies(from vesicle to network and hollow sphere)are formed and boost surfactant molecule enrichment around oil-fouling,leading to highly efficient emulsification.When pH is changed to acidic condition,the surfactant molecules dissociate due to the breaking of imine bonds,and accordingly the emulsion is destroyed and the released oil droplets float to the top layer.After removing the oil-fouling and adjusting the solution back to basic pH,the surfactant assemblies are reconstructed and used for the next oil-fouling cleaning cycle.This study provides a recyclable,efficient and eco-friendly oil-fouling removal approach,satisfying the need of sustainable development.
基金This work was supported by the National Natural Science Foundation of China(Grant No.11704321)the Natural Science Foundation of Shandong Province(ZR2016JL020 and ZR2019MEM044)the Yantai Science and Technology Plan Projects(2019XDHZ087).
文摘Development of porous materials with anti-fouling and remote controllability is highly desired for oil-water separation application yet still challenging. Herein, to address this challenge, a sponge with unusual superhydrophilicity/superoleophobicity and magnetic property was fabricated through a dip-coating process. To exploit its superhydrophilic/superoleophobic property, the obtained sponge was used as a reusable water sorbent scaffold to collect water from bulk oils without absorbing any oil. Owing to its magnetic property, the sponge was manipulated remotely by a magnet without touching it directly during the whole water collection process, which could potentially lower the cost of the water collection process. Apart from acting as a water-absorbing material, the sponge can also be used as affiliation material to separate water from oil-water mixture and oil in water emulsion selectively, when fixed into a cone funnel. This research provides a key addition to the field of oil-water separation materials.
基金supported by the Scientific Research Funding Project of the Education Department of Liaoning Province (Grant No.LJ2020QNL002)。
文摘The design and development of new advanced superwetting porous membranes with antioil-fouling performance are still rare and highly desirable because of their potential widespread applications.A metallic phosphate nanoflower-covered mesh membrane with superhydrophilic and unprecedented antioil-fouling properties is prepared by an exceptionally simple and effective in-situ solution corrosion method.As demonstrated,the outstanding antioil-fouling property of the resulting mesh membrane is connected with the special phosphate group and the three-dimensional(3 D) nanoflower structure.Owing to the antioil-fouling property,upon to water,the oil-fouled mesh membrane can keep the surface free of various kinds of oils,including viscous crude oil to light n-hexane.Thanks to its unprecedented self-cleaning property,the superhydrophilic mesh membrane can effectively separate different oil/water mixtures without prior wetted by water,exhibiting great potential for practical spilled oil remediation.