Sulfur dioxide(SO_2) and benzene homologs are frequently present in the off-gas during the process of sewage sludge drying. A laboratory scale biofilter was set up to co-treat SO_2 and o-xylene in the present study....Sulfur dioxide(SO_2) and benzene homologs are frequently present in the off-gas during the process of sewage sludge drying. A laboratory scale biofilter was set up to co-treat SO_2 and o-xylene in the present study. SO_2 and o-xylene could be removed simultaneously in a single biofilter. Their concentration ratio in the inlet stream influenced the removal efficiencies. It is worth noting that the removal of SO_2 could be enhanced when low concentrations of o-xylene were introduced into the biofilter. Pseudomonas sp., Paenibacillus sp., and Bacillus sp. were the main functional bacteria groups in the biofilter. Sulfur-oxidizing bacteria(SOB) and o-xylene-degrading bacteria(XB) thrived in the biofilter and their counts as well as their growth rate increased with the increase in amount of SO2 and o-xylene supplied. The microbial populations differed in counts and species due to the properties and components of the compounds being treated in the biofilter. The presence of mixed substrates enhanced the diversity of the microbial population. During the treatment process, bioaerosols including potentially pathogenic bacteria, e.g., Acinetobacter lwoffii and Aeromonas sp., were emitted from the biofilter. Further investigation is needed to focus on the potential hazards caused by the bioaerosols emitted from waste gas treatment bioreactors.展开更多
The biofilter is cost-effective for the waste gases treatment. The bacterial is the main microorganism in the conventional biofilters. However, it faces some problems on the elimination of hydrophobic compounds. In or...The biofilter is cost-effective for the waste gases treatment. The bacterial is the main microorganism in the conventional biofilters. However, it faces some problems on the elimination of hydrophobic compounds. In order to overcome these problems, the biofilters with fungi were developed. The objective of this study is to investigate the factors affecting ethyl mercaptan(EM)-degradation using a fungal biofilter. A laboratory experiment was set up. The effects of loading rate, empty bed residence times(EBRT) and pH on EM degradation were investigated. Over 95% removals of EM could be achieved, under the condition of the influent loadings below 50 g/(m·h). Removal efficiencies improved to 98% with EM loading decreased to 45 g/(m·h). For long EBRT of 58 s corresponding to a flow rate of 0.3 m3/h, the EM removal efficiencies of over 98% were observed. However, when EBRT was decreased to 14 s, the removal efficiencies fell under 80%. The pH range of 3—5 was feasible to fungi.展开更多
We investigated the correlation between performance and the bacteria community composition by H2S and toluene co-treatment. Operation of the bioreactor was divided into four stages, in which the inlet concentration of...We investigated the correlation between performance and the bacteria community composition by H2S and toluene co-treatment. Operation of the bioreactor was divided into four stages, in which the inlet concentration of toluene and H2S were gradually increased. In Stage I, toluene was the sole target compound with an average removal efficiency of 86.49%. After adding HeS in Stage II, removal efficiency of toluene decreased immediately and recovered gradually to 85.96%. When the inlet concentration of toluene and HzS was increased in Stage III and Stage IV, respectively, the average removal efficiency for toluene increased continuously from 86.31% to 87.24%. The elimination capacities of toluene increased with increasing inlet loading rates of toluene and H2S. Results of the PCR-DGGE analysis showed a turnover growth and decline of the microbial populations in the bioreactor. In Stage I, the dominant toluene-degrading bacteria mainly contained Pseudomonas sp. strain PS + and Hydrogenophaga sp. In Stage IV, however, the dominant toluene-degrading bacteria was aciduric bacteria (Clostridium populeti). The dominant microbial community in the bioreactor enhanced the elimination capacity of toluene, and adding H2S changed the environment of microbial growth, thus resulted in an evolution of dominant microorganisms. Analyses of microbial community and their activities provides valuable information to efficiently enhance simultaneous removal of toluene and H2S in the bioreactor.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51478456 and 51308527)
文摘Sulfur dioxide(SO_2) and benzene homologs are frequently present in the off-gas during the process of sewage sludge drying. A laboratory scale biofilter was set up to co-treat SO_2 and o-xylene in the present study. SO_2 and o-xylene could be removed simultaneously in a single biofilter. Their concentration ratio in the inlet stream influenced the removal efficiencies. It is worth noting that the removal of SO_2 could be enhanced when low concentrations of o-xylene were introduced into the biofilter. Pseudomonas sp., Paenibacillus sp., and Bacillus sp. were the main functional bacteria groups in the biofilter. Sulfur-oxidizing bacteria(SOB) and o-xylene-degrading bacteria(XB) thrived in the biofilter and their counts as well as their growth rate increased with the increase in amount of SO2 and o-xylene supplied. The microbial populations differed in counts and species due to the properties and components of the compounds being treated in the biofilter. The presence of mixed substrates enhanced the diversity of the microbial population. During the treatment process, bioaerosols including potentially pathogenic bacteria, e.g., Acinetobacter lwoffii and Aeromonas sp., were emitted from the biofilter. Further investigation is needed to focus on the potential hazards caused by the bioaerosols emitted from waste gas treatment bioreactors.
文摘The biofilter is cost-effective for the waste gases treatment. The bacterial is the main microorganism in the conventional biofilters. However, it faces some problems on the elimination of hydrophobic compounds. In order to overcome these problems, the biofilters with fungi were developed. The objective of this study is to investigate the factors affecting ethyl mercaptan(EM)-degradation using a fungal biofilter. A laboratory experiment was set up. The effects of loading rate, empty bed residence times(EBRT) and pH on EM degradation were investigated. Over 95% removals of EM could be achieved, under the condition of the influent loadings below 50 g/(m·h). Removal efficiencies improved to 98% with EM loading decreased to 45 g/(m·h). For long EBRT of 58 s corresponding to a flow rate of 0.3 m3/h, the EM removal efficiencies of over 98% were observed. However, when EBRT was decreased to 14 s, the removal efficiencies fell under 80%. The pH range of 3—5 was feasible to fungi.
基金supported by the National Natural Science Foundation of China (No. 50921064)
文摘We investigated the correlation between performance and the bacteria community composition by H2S and toluene co-treatment. Operation of the bioreactor was divided into four stages, in which the inlet concentration of toluene and H2S were gradually increased. In Stage I, toluene was the sole target compound with an average removal efficiency of 86.49%. After adding HeS in Stage II, removal efficiency of toluene decreased immediately and recovered gradually to 85.96%. When the inlet concentration of toluene and HzS was increased in Stage III and Stage IV, respectively, the average removal efficiency for toluene increased continuously from 86.31% to 87.24%. The elimination capacities of toluene increased with increasing inlet loading rates of toluene and H2S. Results of the PCR-DGGE analysis showed a turnover growth and decline of the microbial populations in the bioreactor. In Stage I, the dominant toluene-degrading bacteria mainly contained Pseudomonas sp. strain PS + and Hydrogenophaga sp. In Stage IV, however, the dominant toluene-degrading bacteria was aciduric bacteria (Clostridium populeti). The dominant microbial community in the bioreactor enhanced the elimination capacity of toluene, and adding H2S changed the environment of microbial growth, thus resulted in an evolution of dominant microorganisms. Analyses of microbial community and their activities provides valuable information to efficiently enhance simultaneous removal of toluene and H2S in the bioreactor.