Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forc...Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyS, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.展开更多
To improve the forecast of typhoon intensity and meet the requirements of operational services on marine meteorology in Shanghai Meteorological Service of CMA, a few of important scientific research projects from nati...To improve the forecast of typhoon intensity and meet the requirements of operational services on marine meteorology in Shanghai Meteorological Service of CMA, a few of important scientific research projects from national, Shanghai municipal government and CMA were undertaken by Shanghai Typhoon Institute in recent 10 years. Some field experiments for typhoon were carried out. The observational researches on physical process of air-sea interaction reveal some new facts about the turbulence energy transport in the atmospheric and ocean boundary layer under typhoon. Especially there is more understanding for multi-scale response mechanism of ocean and feedback effect of each other. The simulation and prediction of typhoon intensity in the coupled ocean-atmosphere model are improved due to better expression of drag coefficient on sea surface and the sea spray effect on momentum and heat transport. Furthermore, the operational wave models were established for global and northwest Pacific respectively. In particular, the sea wave and storm surge numerical prediction systems with very high resolution including complex physical processes, such as interaction of wave and current, developed over China coastal sea. Based on the numerical model outputs some useful risk indexes for ship voyage were formed and put into use in Shanghai Marine and Meteorological Center, such as wave steepness index, ratio index of swell and synchronism oscillation index et al. The numerical marine products are widely used in daily operational work and professional services recently.展开更多
基金This research was supported by a grant from the 0ffice of Naval Research of United States under the Sea of Japan Departmental Research Initiatite of N00014-98-1-0236a project from the National Natural Science Foundation of China under contract No.40506006.
文摘Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyS, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.
基金the funding support from the Key Project of National Natural Science Foundation of China (No.41730959)the National Program on Global Change and Air-Sea Interaction (GASI-IPOVAI-04)
文摘To improve the forecast of typhoon intensity and meet the requirements of operational services on marine meteorology in Shanghai Meteorological Service of CMA, a few of important scientific research projects from national, Shanghai municipal government and CMA were undertaken by Shanghai Typhoon Institute in recent 10 years. Some field experiments for typhoon were carried out. The observational researches on physical process of air-sea interaction reveal some new facts about the turbulence energy transport in the atmospheric and ocean boundary layer under typhoon. Especially there is more understanding for multi-scale response mechanism of ocean and feedback effect of each other. The simulation and prediction of typhoon intensity in the coupled ocean-atmosphere model are improved due to better expression of drag coefficient on sea surface and the sea spray effect on momentum and heat transport. Furthermore, the operational wave models were established for global and northwest Pacific respectively. In particular, the sea wave and storm surge numerical prediction systems with very high resolution including complex physical processes, such as interaction of wave and current, developed over China coastal sea. Based on the numerical model outputs some useful risk indexes for ship voyage were formed and put into use in Shanghai Marine and Meteorological Center, such as wave steepness index, ratio index of swell and synchronism oscillation index et al. The numerical marine products are widely used in daily operational work and professional services recently.