Inhalable particle is a harmful air pollutant that causes a significant threat to people's health and ecological environments,which should be removed to purify air,but there exists limited removal efficiency due t...Inhalable particle is a harmful air pollutant that causes a significant threat to people's health and ecological environments,which should be removed to purify air,but there exists limited removal efficiency due to particle re-entrainment.Here,Operando observation system based on microscopic visualization method is developed to make in situ test of particle migration,deposition and re-entrainment characteristics on a lab-on-a-chip to achieve the investigation in micro-level scale.The deposition evolution of charged particles is recorded in electric field region intuitively,which confirms the fracture of particle chain occurs during the growth process of deposited particles.It captures the instantaneous process that a larger particle with micron size due to the coagulation of submicron particles fractures from main body of the particle chain for the first time.The analysis of migration behavior of a single submicron particle near electrode surface demonstrates the direct influence of drag force on the fracture of particle chain.This work is the first-time visualization of dynamic process and mechanism elucidation of particle re-entrainment at the micron level,and the findings will provide the theory support for the particle re-entrainment mechanism and bring inspires of enhancing capture efficiency of inhalable particle.展开更多
Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studi...Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studies have assessed the protective effect of PSP sand fences,especially through field observations.This study analyzes the effects of double-row PSP sand fences on wind and sand resistance using field observations and a computational fluid dynamics(CFD)numerical simulation.The results of field observations showed that the average windproof efficiencies of the first-row and second-row sand fences were 79.8%and 70.8%,respectively.Moreover,the average windproof efficiencies of the numerical simulation behind the first-row and second-row sand fences were 89.8%and 81.1%,respectively.The sand-resistance efficiency of the double-row PSP sand fences was 65.4%.Sand deposition occurred close to the first-row sand fence;however,there was relatively little sand on the leeward side of the second-row sand fence.The length of sand accumulation near PSP sand fences obtained by numerical simulation was basically consistent with that through field observations,indicating that field observations combined with numerical simulation can provide insight into the complex wind-blown sand field over PSP sand fences.This study indicates that the protection efficiency of the double-row PSP sand fences is sufficient for effective control of sand hazards associated with extremely strong wind in the Gobi areas.The output of this work is expected to improve the future application of PSP sand fences.展开更多
基金supported by the National Natural Science Foundation of China (Nos.52200130 and 22176123)Postdoctoral Science Foundation of China (No.2022M722082)the National Key Research&Development Plan (No.2017YFC0211804)。
文摘Inhalable particle is a harmful air pollutant that causes a significant threat to people's health and ecological environments,which should be removed to purify air,but there exists limited removal efficiency due to particle re-entrainment.Here,Operando observation system based on microscopic visualization method is developed to make in situ test of particle migration,deposition and re-entrainment characteristics on a lab-on-a-chip to achieve the investigation in micro-level scale.The deposition evolution of charged particles is recorded in electric field region intuitively,which confirms the fracture of particle chain occurs during the growth process of deposited particles.It captures the instantaneous process that a larger particle with micron size due to the coagulation of submicron particles fractures from main body of the particle chain for the first time.The analysis of migration behavior of a single submicron particle near electrode surface demonstrates the direct influence of drag force on the fracture of particle chain.This work is the first-time visualization of dynamic process and mechanism elucidation of particle re-entrainment at the micron level,and the findings will provide the theory support for the particle re-entrainment mechanism and bring inspires of enhancing capture efficiency of inhalable particle.
基金This research was funded by the Fellowship of the China Postdoctoral Science Foundation(2021M703466)the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347)the Natural Science Foundation of Gansu Province,China(20JR10RA231).
文摘Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studies have assessed the protective effect of PSP sand fences,especially through field observations.This study analyzes the effects of double-row PSP sand fences on wind and sand resistance using field observations and a computational fluid dynamics(CFD)numerical simulation.The results of field observations showed that the average windproof efficiencies of the first-row and second-row sand fences were 79.8%and 70.8%,respectively.Moreover,the average windproof efficiencies of the numerical simulation behind the first-row and second-row sand fences were 89.8%and 81.1%,respectively.The sand-resistance efficiency of the double-row PSP sand fences was 65.4%.Sand deposition occurred close to the first-row sand fence;however,there was relatively little sand on the leeward side of the second-row sand fence.The length of sand accumulation near PSP sand fences obtained by numerical simulation was basically consistent with that through field observations,indicating that field observations combined with numerical simulation can provide insight into the complex wind-blown sand field over PSP sand fences.This study indicates that the protection efficiency of the double-row PSP sand fences is sufficient for effective control of sand hazards associated with extremely strong wind in the Gobi areas.The output of this work is expected to improve the future application of PSP sand fences.