由于跟踪过程目标不规则形变的影响,采用固定纵横比的尺度模型无法精确地估计目标的尺度.为解决该问题,本文提出基于纵横比自适应的相关滤波跟踪算法.基于fDSST(fast Discriminative Scale Space Tracking)算法,训练学习纵横比模型,更...由于跟踪过程目标不规则形变的影响,采用固定纵横比的尺度模型无法精确地估计目标的尺度.为解决该问题,本文提出基于纵横比自适应的相关滤波跟踪算法.基于fDSST(fast Discriminative Scale Space Tracking)算法,训练学习纵横比模型,更新目标的纵横比,获取更精确的目标尺度.在此基础上,本文设计了平滑修正方案以及学习率自适应机制,可以有效地缓解因目标出现遮挡导致的模型漂移问题.在OTB100、VOT2016和VOT2018数据集上与其他跟踪算法进行对比实验,结果表明本文算法改善了基准算法的性能,特别是在OTB100上的总体准确率和成功率比fDSST提高了9.6%和6.2%.展开更多
This paper discusses recognition of three dimensional (3D) moving object from multiple views, which is based on 2D processed frames of a video sequence, view categories (feature aspects) of object, and their transiti...This paper discusses recognition of three dimensional (3D) moving object from multiple views, which is based on 2D processed frames of a video sequence, view categories (feature aspects) of object, and their transitions. Log polar mapping (LPM) and discrete Fourier transformation (DFM) are used to obtain position, scale and rotation invariant feature vectors of 2D characteristic views. ART 2 model is used as memory and classifier of the feature information of the object. ART 2 neural network is improved in experiment with satisfactory results.展开更多
The availability of a good viewpoint space partition is crucial in three dimensional (3-D) object recognition on the approach of aspect graph. There are two important events, depicted by the aspect graph approach, e...The availability of a good viewpoint space partition is crucial in three dimensional (3-D) object recognition on the approach of aspect graph. There are two important events, depicted by the aspect graph approach, edge-:edge-edge (EEE) events and edge-vertex (EV) events. This paper presents an algorithm to compute EEE events by characteristic analysis based on conicoid theory, in contrast to current algorithms that focus too much on EV events and often overlook the importance of EEE events. Also, the paper provides a standard flowchart for the viewpoint space partitioning based on aspect graph theory that makes it suitable for perspective models. The partitioning result best demonstrates the algorithm's efficiency with more valuable viewpoints found with the help of EEE events, which can definitely help to achieve high recognition rate for 3-D object recognition.展开更多
文摘由于跟踪过程目标不规则形变的影响,采用固定纵横比的尺度模型无法精确地估计目标的尺度.为解决该问题,本文提出基于纵横比自适应的相关滤波跟踪算法.基于fDSST(fast Discriminative Scale Space Tracking)算法,训练学习纵横比模型,更新目标的纵横比,获取更精确的目标尺度.在此基础上,本文设计了平滑修正方案以及学习率自适应机制,可以有效地缓解因目标出现遮挡导致的模型漂移问题.在OTB100、VOT2016和VOT2018数据集上与其他跟踪算法进行对比实验,结果表明本文算法改善了基准算法的性能,特别是在OTB100上的总体准确率和成功率比fDSST提高了9.6%和6.2%.
文摘This paper discusses recognition of three dimensional (3D) moving object from multiple views, which is based on 2D processed frames of a video sequence, view categories (feature aspects) of object, and their transitions. Log polar mapping (LPM) and discrete Fourier transformation (DFM) are used to obtain position, scale and rotation invariant feature vectors of 2D characteristic views. ART 2 model is used as memory and classifier of the feature information of the object. ART 2 neural network is improved in experiment with satisfactory results.
基金Supported by the National Natural Science Foundation of China (No.60502013)by the National High-Tech Research and Development(863) Program of China(No.2006AA01Z115)
文摘The availability of a good viewpoint space partition is crucial in three dimensional (3-D) object recognition on the approach of aspect graph. There are two important events, depicted by the aspect graph approach, edge-:edge-edge (EEE) events and edge-vertex (EV) events. This paper presents an algorithm to compute EEE events by characteristic analysis based on conicoid theory, in contrast to current algorithms that focus too much on EV events and often overlook the importance of EEE events. Also, the paper provides a standard flowchart for the viewpoint space partitioning based on aspect graph theory that makes it suitable for perspective models. The partitioning result best demonstrates the algorithm's efficiency with more valuable viewpoints found with the help of EEE events, which can definitely help to achieve high recognition rate for 3-D object recognition.