Plant phosphate transporter (PT) genes comprise a large family with important roles in various physiological and biochemical processes. In this study, a database search yielded 26 potential PT family genes in rice ...Plant phosphate transporter (PT) genes comprise a large family with important roles in various physiological and biochemical processes. In this study, a database search yielded 26 potential PT family genes in rice (Oryza sativa). Analysis of these genes led to identification of eight conserved motifs and 5-12 trans-membrane segments, most of them conserved. A total of 237 putative cis elements were found in the 2-kbupstream region of these genes. Of these, a majority were Pi-response and other stress-related cis regulatory elements, such as PHO-like, TATA-box-like, PHR1, or Helix-loop- helix elements, and WRKY1 and ABRE elements, suggesting gene regulation by these signals. Comprehensive expression analysis of these genes was performed using data from microarrays hybridized with RNA from 27 tissues covering the entire lifecycle from three rice genotypes: Minghui 63, Zhenshan 97, and Shanyou 63. Real-time PCR analysis confirmed that three rice PT genes are preferentially expressed in stamen at I d before flowering, two in panicle at the heading stage, and two in flag leaf at 14 d after the heading stage. Hormone-treatment experiments revealed differential up-regulation or down-regulation of 11 rice PT genes in seedlings exposed to five hormones, respectively. These results will be useful for elucidating the roles of these genes in the growth, development, and stress response of the rice plant.展开更多
K+ uptake in the high-affinity range of concentrations and its components have been widely studied. In Arabidposis thaliana, the AtHAK5 transporter and the AtAKT1 channel have been shown to be the main transport prot...K+ uptake in the high-affinity range of concentrations and its components have been widely studied. In Arabidposis thaliana, the AtHAK5 transporter and the AtAKT1 channel have been shown to be the main transport proteins involved in this process. Here, we study the role of these two systems under two important stress conditions: low K+ supply or the presence of salinity. T-DNA insertion lines disrupting AtHAK5 and A tAKT1 are employed for long-term experi- ments that allow physiological characterization of the mutant lines. We found that AtHAK5 is required for K+ absorption necessary to sustain plant growth at low K+ in the absence as well as in the presence of salinity. Salinity greatly reduced AtHAK5 transcript levels and promoted AtAKTl-mediated K+ efflux, resulting in an important impairment of K+ nutrition. Although having a limited capacity, AtHAK5 plays a major role for K+ acquisition from low K+ concentrations in the presence of salinity.展开更多
Nitrogen(N), potassium(K), and phosphorus(P) are essential macronutrients for plant growth and development, and their availability affects crop yield. Compared with N, the relatively low availability of K and P in soi...Nitrogen(N), potassium(K), and phosphorus(P) are essential macronutrients for plant growth and development, and their availability affects crop yield. Compared with N, the relatively low availability of K and P in soils limits crop production and thus threatens food security and agricultural sustainability. Improvement of plant nutrient utilization efficiency provides a potential route to overcome the effects of K and P deficiencies. Investigation of the molecular mechanisms underlying how plants sense, absorb, transport, and use K and P is an important prerequisite to improve crop nutrient utilization efficiency. In this review, we summarize current understanding of K and P transport and signaling in plants, mainly taking Arabidopsis thaliana and rice(Oryza sativa) as examples. We also discuss the mechanisms coordinating transport of N and K, as well as P and N.展开更多
Plant mineral nutrition is essential for crop yields and human health.However,the uneven distribution of mineral elements over time and space leads to a lack or excess of available mineral elements in plants.Among the...Plant mineral nutrition is essential for crop yields and human health.However,the uneven distribution of mineral elements over time and space leads to a lack or excess of available mineral elements in plants.Among the essential nutrients,calcium(Ca^(2+))stands out as a prominent second messenger that plays crucial roles in response to extracellular stimuli in all eukaryotes.Distinct Ca^(2+)signatures with unique parameters are induced by different stresses and deciphered by various Ca^(2+)sensors.Recent research on the participation of Ca^(2+)signaling in regulation of mineral elements has made great progress.In this review,we focus on the impact of Ca^(2+)signaling on plant mineral uptake and detoxification.Specifically,we emphasize the significance of Ca^(2+)signaling for regulation of plant mineral nutrition and delve into key points and novel avenues for future investigations,aiming to offer new insights into plant ion homeostasis.展开更多
Plant take up the essential nutrient sulfur as sulfate from the soil, reduce it, and assimilate into bioorganic compounds, with cysteine being the first product. Both sulfate uptake and assimilation are highly regulat...Plant take up the essential nutrient sulfur as sulfate from the soil, reduce it, and assimilate into bioorganic compounds, with cysteine being the first product. Both sulfate uptake and assimilation are highly regulated by the demand for the reduced sulfur, by availability of nutrients, and by environmental conditions. In the last decade, great prog- ress has been achieved in dissecting the regulation of sulfur metabolism. Sulfate uptake and reduction of activated sulfate, adenosine 5'-phosphosulfate (APS), to sulfite by APS reductase appear to be the key regulatory steps. Here, we review the current knowledge on regulation of these processes, with special attention given to similarities and differences.展开更多
文摘Plant phosphate transporter (PT) genes comprise a large family with important roles in various physiological and biochemical processes. In this study, a database search yielded 26 potential PT family genes in rice (Oryza sativa). Analysis of these genes led to identification of eight conserved motifs and 5-12 trans-membrane segments, most of them conserved. A total of 237 putative cis elements were found in the 2-kbupstream region of these genes. Of these, a majority were Pi-response and other stress-related cis regulatory elements, such as PHO-like, TATA-box-like, PHR1, or Helix-loop- helix elements, and WRKY1 and ABRE elements, suggesting gene regulation by these signals. Comprehensive expression analysis of these genes was performed using data from microarrays hybridized with RNA from 27 tissues covering the entire lifecycle from three rice genotypes: Minghui 63, Zhenshan 97, and Shanyou 63. Real-time PCR analysis confirmed that three rice PT genes are preferentially expressed in stamen at I d before flowering, two in panicle at the heading stage, and two in flag leaf at 14 d after the heading stage. Hormone-treatment experiments revealed differential up-regulation or down-regulation of 11 rice PT genes in seedlings exposed to five hormones, respectively. These results will be useful for elucidating the roles of these genes in the growth, development, and stress response of the rice plant.
文摘K+ uptake in the high-affinity range of concentrations and its components have been widely studied. In Arabidposis thaliana, the AtHAK5 transporter and the AtAKT1 channel have been shown to be the main transport proteins involved in this process. Here, we study the role of these two systems under two important stress conditions: low K+ supply or the presence of salinity. T-DNA insertion lines disrupting AtHAK5 and A tAKT1 are employed for long-term experi- ments that allow physiological characterization of the mutant lines. We found that AtHAK5 is required for K+ absorption necessary to sustain plant growth at low K+ in the absence as well as in the presence of salinity. Salinity greatly reduced AtHAK5 transcript levels and promoted AtAKTl-mediated K+ efflux, resulting in an important impairment of K+ nutrition. Although having a limited capacity, AtHAK5 plays a major role for K+ acquisition from low K+ concentrations in the presence of salinity.
基金supported by grants from the National Key Research and Development Program of China (2016YFD0100700)the Ministry of Agriculture of China for Transgenic Research(2016ZX08009002)+2 种基金the National Natural Science Foundation of China (32025004, 31921001, 31670245, and 31970273)the Chinese Universities Scientific Fund (2020TC153)Beijing Outstanding University Discipline Program。
文摘Nitrogen(N), potassium(K), and phosphorus(P) are essential macronutrients for plant growth and development, and their availability affects crop yield. Compared with N, the relatively low availability of K and P in soils limits crop production and thus threatens food security and agricultural sustainability. Improvement of plant nutrient utilization efficiency provides a potential route to overcome the effects of K and P deficiencies. Investigation of the molecular mechanisms underlying how plants sense, absorb, transport, and use K and P is an important prerequisite to improve crop nutrient utilization efficiency. In this review, we summarize current understanding of K and P transport and signaling in plants, mainly taking Arabidopsis thaliana and rice(Oryza sativa) as examples. We also discuss the mechanisms coordinating transport of N and K, as well as P and N.
基金supported by the National Natural Science Foundation of China(32222008 to C.W.)the China Postdoctoral Science Foundation(2023M732883 to C.J.).
文摘Plant mineral nutrition is essential for crop yields and human health.However,the uneven distribution of mineral elements over time and space leads to a lack or excess of available mineral elements in plants.Among the essential nutrients,calcium(Ca^(2+))stands out as a prominent second messenger that plays crucial roles in response to extracellular stimuli in all eukaryotes.Distinct Ca^(2+)signatures with unique parameters are induced by different stresses and deciphered by various Ca^(2+)sensors.Recent research on the participation of Ca^(2+)signaling in regulation of mineral elements has made great progress.In this review,we focus on the impact of Ca^(2+)signaling on plant mineral uptake and detoxification.Specifically,we emphasize the significance of Ca^(2+)signaling for regulation of plant mineral nutrition and delve into key points and novel avenues for future investigations,aiming to offer new insights into plant ion homeostasis.
文摘Plant take up the essential nutrient sulfur as sulfate from the soil, reduce it, and assimilate into bioorganic compounds, with cysteine being the first product. Both sulfate uptake and assimilation are highly regulated by the demand for the reduced sulfur, by availability of nutrients, and by environmental conditions. In the last decade, great prog- ress has been achieved in dissecting the regulation of sulfur metabolism. Sulfate uptake and reduction of activated sulfate, adenosine 5'-phosphosulfate (APS), to sulfite by APS reductase appear to be the key regulatory steps. Here, we review the current knowledge on regulation of these processes, with special attention given to similarities and differences.