The effects of continuously regenerating diesel particulate filter (CRDPF) systems on regulated gaseous emissions, and number-size distribution and mass of particles emanated from a diesel engine have been investiga...The effects of continuously regenerating diesel particulate filter (CRDPF) systems on regulated gaseous emissions, and number-size distribution and mass of particles emanated from a diesel engine have been investigated in this study. Two CRDPF units (CRDPF-1 and CRDPF-2) with different specifications were separately retrofitted to the engine running with European steady-state cycle (ESC). An electrical low pressure impactor (ELPI) was used for particle number-size distribution measurement and mass estimation. The conversion/reduction rate (RcR) of hydrocarbons (HC) and carbon monoxide (CO) across CRDPF-1 was 83% and 96.3%, respectively. Similarly, the RCR of HC and CO and across CRDPF-2 was 91.8% and 99.1%, respectively. The number concentration of particles and their concentration peaks; nuclei mode, accumulation mode and total particles; and particle mass were highly reduced with the CRDPF units. The nuclei mode particles at downstream of CRDPF-1 and CRDPF-2 decreased by 99.9% to 100% and 97.8% to 99.8% respectively; and the particle mass reduced by 73% to 92.2% and 35.3% to 72.4%, respectively, depending on the engine conditions. In addition, nuclei mode particles increased with the increasing of engine speed due to the heterogeneous nucleation initiated by the higher exhaust temperature, while accumulation mode particles were higher at higher loads due to the decrease in the air-to-fuel ratio (A/F) at higher loads.展开更多
Aerosol observations were carried out at Xianghe Scientific Balloon Base (39.45N, 117E) using a strato-spheric balloon. The particle number concentrations of the tropospheric and stratospheric aerosols were directly e...Aerosol observations were carried out at Xianghe Scientific Balloon Base (39.45N, 117E) using a strato-spheric balloon. The particle number concentrations of the tropospheric and stratospheric aerosols were directly explored. The vertical distributions of the number concentration, number-size (that is, particle number versus particle size) distribution, and the fraction of fine particles (0.5 mm>r>0.15 mm/ r>0.15 mm) are reported in this paper. The profiles of particle concentration present multi-peak phenomenon. The pattern of size distribution for atmospheric aerosol indicates a tri-modal (r=~0.2 mm, ~0.88 mm and ~7.0 mm) and a bi-modal (r=~0.13 mm and 2.0 mm). The number-size distribution almost fits the Junge distribution for particles with r<0.5 mm in the stratosphere of 1993 and the troposphere of 1994. But the distributions of coarse particles (r>0.5 mm) are not uniform. The number-size distribution exhibits also a wide size range in the troposphere of 1993. The results demonstrate that fine particles represent the major portion in the tropo-sphere during the measurement period, reaching as high as 95% in 1994. Certain coarse particle peaks in the tropo-sphere were attributed to clouds and other causes, and in the stratosphere to volcanic eruption. The stratospheric aerosol layer consists of unique fractions of fine or coarse particles depending on their sources. In summary, the process of gas-to-particles conversion was active and the coarse particles were rich over the Xianghe area. The measurements also demonstrate that the spatial and temporal atmospheric aerosol distributions are nonuniform and changeful.展开更多
Two-wheeler vehicles are an important mode of transportation in developing countries. However, the emissions from two-wheeler vehicles are significant. Urban two-wheeler vehicles with gasoline-fueled engines produce N...Two-wheeler vehicles are an important mode of transportation in developing countries. However, the emissions from two-wheeler vehicles are significant. Urban two-wheeler vehicles with gasoline-fueled engines produce NOx and particulate matter emissions that affect urban air quality. During traffic light stops and programmed stops, for instance, pollutants are emitted and are dangerous to human health. In this experimental study, two-wheeler vehicles with different makes, technologies and engine capacities were tested for exhaust emissions including gravimetric and online measurements at different engine speeds and a no load condition at a simulated traffic junction. Gravimetric measurements were performed by collecting the particulate mass (at two engine speeds: 1500 and 2500 rpm) from a diluted engine-out exhaust on quartz filter paper. Next, these collected particulates were used to determine the presence of metals, as well as the benzene soluble organic fraction (BSOF). The total particulate mass, BSOF and trace elements were slightly higher at a higher engine speed (2500 rpm). Online measurements were performed by sampling the engine exhaust (at four engine speeds: 1500, 2000, 2500, and 3000rpm) and using online instruments to determine the particle number and size distribution, the particle-bound polyaromatic hydrocarbons (PAHs), the gaseous emissions and the smoke opacity. Engines with higher cubic capacity emitted a higher concentration of nano-particles. The particle-bound PAH concentration increased as the engine speed increased, but this concentration was notably low for the highest engine speed tested (3000 rpm). The regulated gaseous emissions increased as the engine speed increased for all vehicles.展开更多
Particulate matter(PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health.It is urged to get deep knowledge of their spatial-temporal distribution of source emission characterist...Particulate matter(PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health.It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics,especially ultrafine particles(UFP &lt; 100 nm) and accumulation mode particles(AMP 100-555 nm).Four commercial cooking oils are auto dipped water to simulate cooking fume under heating to 255℃ to investigate PM emission and decay features between 0.03 and 10 μm size dimension by electrical low pressure impactor(ELPI) without ventilation.Rapeseed and sunflower produced high PM_(2.5) around5.1 mg/m^3,in comparison with those of soybean and corn(5.87 and 4.55 mg/m^3,respectively)at peak emission time between 340 and 450 sec since heating oil,but with the same level of particle numbers 6-9 × 10~5/cm^3.Mean values of PM_(1.0)/PM_(2.5) and PM_(2.5)/PM_(10) at peak emission time are around 0.51-0.55 and 0.23-0.29.After 15 min naturally deposition,decay rates of PM_(1.0),PM_(2.5) and PM_(10) are 13.3%-29.8%,20.1%-33.9%and 41.2%-54.7%,which manifest that PM_(1.0) is quite hard to decay than larger particles,PM_(2.5) and PM_(1.0).The majority of the particle emission locates at 43 nm with the largest decay rate at 75%,and shifts to a larger size between137 and 555 nm after 15 min decay.The decay rates of the particles are sensitive to the oil type.展开更多
New particle formation is a key process in shaping the size distribution of aerosols in the atmosphere.We present here the measurement results of number and size distribution of aerosol particles (10–10000 nm in dia...New particle formation is a key process in shaping the size distribution of aerosols in the atmosphere.We present here the measurement results of number and size distribution of aerosol particles (10–10000 nm in diameter) obtained in the summer of 2008,at a suburban site in Beijing,China.We firstly reported the pollution level,particle number size distribution,diurnal variation of the particle number size distribution and then introduced the characteristics of the particle formation processes.The results showed that the number concentration of ultrafine particles was much lower than the values measured in other urban or suburban areas in previous studies.Sharp increases of ultrafine particle count were frequently observed at noon.An examination of the diurnal pattern suggested that the burst of ultrafine particles was mainly due to new particle formation promoted by photochemical processes.In addition,high relative humidity was a key factor driving the growth of the particles in the afternoon.During the 2-month observations,new particle formation from homogeneous nucleation was observed for 42.7% of the study period.The average growth rate of newly formed particles was 3.2 nm/hr,and varied from 1.2 to 8.0 nm/hr.The required concentration of condensable vapor was 4.4×10 7 cm-3,and its source rate was 1.2×10 6 cm-3 sec-1.Further calculation on the source rate of sulphuric acid vapor indicated that the average participation of sulphuric acid to particle growth rates was 28.7%.展开更多
The atmospheric aerosol distribution,source and relationship with cloud condensation nuclei(CCN) observed during the Beijing Cloud Experiment(BCE) are analyzed.The results show that the high number concentrations of a...The atmospheric aerosol distribution,source and relationship with cloud condensation nuclei(CCN) observed during the Beijing Cloud Experiment(BCE) are analyzed.The results show that the high number concentrations of aerosol mainly distributed below 4500 m,and the magnitude could reach to 103 cm 3.Above 4500 m,the aerosol number concentrations decreased to 101 cm 3 as the altitude increases,and the aerosol mean diameters were between 0.16 and 0.19 μm.Below 4500 m,the number size distributions of aerosol showed a bimodal(multimodal) mode,and an unimodal mode above it.Due to the different sources of aerosol,the conversion ratios of aerosol to CCN were less than 20% below 4500 m,and reached 50% above the level at 0.3% supersaturation.The back trajectories showed that aerosols at higher levels above 4500 m were strongly affected by large-size particles and those below 4500 m were strongly affected by local or regional pollution.Based on observations,a relationship between the CCN number concentration and aerosol number concentration is established.展开更多
基金supported by the National Natural Science Foundation of China (No. 40805053)
文摘The effects of continuously regenerating diesel particulate filter (CRDPF) systems on regulated gaseous emissions, and number-size distribution and mass of particles emanated from a diesel engine have been investigated in this study. Two CRDPF units (CRDPF-1 and CRDPF-2) with different specifications were separately retrofitted to the engine running with European steady-state cycle (ESC). An electrical low pressure impactor (ELPI) was used for particle number-size distribution measurement and mass estimation. The conversion/reduction rate (RcR) of hydrocarbons (HC) and carbon monoxide (CO) across CRDPF-1 was 83% and 96.3%, respectively. Similarly, the RCR of HC and CO and across CRDPF-2 was 91.8% and 99.1%, respectively. The number concentration of particles and their concentration peaks; nuclei mode, accumulation mode and total particles; and particle mass were highly reduced with the CRDPF units. The nuclei mode particles at downstream of CRDPF-1 and CRDPF-2 decreased by 99.9% to 100% and 97.8% to 99.8% respectively; and the particle mass reduced by 73% to 92.2% and 35.3% to 72.4%, respectively, depending on the engine conditions. In addition, nuclei mode particles increased with the increasing of engine speed due to the heterogeneous nucleation initiated by the higher exhaust temperature, while accumulation mode particles were higher at higher loads due to the decrease in the air-to-fuel ratio (A/F) at higher loads.
基金supported by National Important Basic Research and Development Program of the Ministry of Science and Technology(“973”Project)under grant number G2000048703.
文摘Aerosol observations were carried out at Xianghe Scientific Balloon Base (39.45N, 117E) using a strato-spheric balloon. The particle number concentrations of the tropospheric and stratospheric aerosols were directly explored. The vertical distributions of the number concentration, number-size (that is, particle number versus particle size) distribution, and the fraction of fine particles (0.5 mm>r>0.15 mm/ r>0.15 mm) are reported in this paper. The profiles of particle concentration present multi-peak phenomenon. The pattern of size distribution for atmospheric aerosol indicates a tri-modal (r=~0.2 mm, ~0.88 mm and ~7.0 mm) and a bi-modal (r=~0.13 mm and 2.0 mm). The number-size distribution almost fits the Junge distribution for particles with r<0.5 mm in the stratosphere of 1993 and the troposphere of 1994. But the distributions of coarse particles (r>0.5 mm) are not uniform. The number-size distribution exhibits also a wide size range in the troposphere of 1993. The results demonstrate that fine particles represent the major portion in the tropo-sphere during the measurement period, reaching as high as 95% in 1994. Certain coarse particle peaks in the tropo-sphere were attributed to clouds and other causes, and in the stratosphere to volcanic eruption. The stratospheric aerosol layer consists of unique fractions of fine or coarse particles depending on their sources. In summary, the process of gas-to-particles conversion was active and the coarse particles were rich over the Xianghe area. The measurements also demonstrate that the spatial and temporal atmospheric aerosol distributions are nonuniform and changeful.
文摘Two-wheeler vehicles are an important mode of transportation in developing countries. However, the emissions from two-wheeler vehicles are significant. Urban two-wheeler vehicles with gasoline-fueled engines produce NOx and particulate matter emissions that affect urban air quality. During traffic light stops and programmed stops, for instance, pollutants are emitted and are dangerous to human health. In this experimental study, two-wheeler vehicles with different makes, technologies and engine capacities were tested for exhaust emissions including gravimetric and online measurements at different engine speeds and a no load condition at a simulated traffic junction. Gravimetric measurements were performed by collecting the particulate mass (at two engine speeds: 1500 and 2500 rpm) from a diluted engine-out exhaust on quartz filter paper. Next, these collected particulates were used to determine the presence of metals, as well as the benzene soluble organic fraction (BSOF). The total particulate mass, BSOF and trace elements were slightly higher at a higher engine speed (2500 rpm). Online measurements were performed by sampling the engine exhaust (at four engine speeds: 1500, 2000, 2500, and 3000rpm) and using online instruments to determine the particle number and size distribution, the particle-bound polyaromatic hydrocarbons (PAHs), the gaseous emissions and the smoke opacity. Engines with higher cubic capacity emitted a higher concentration of nano-particles. The particle-bound PAH concentration increased as the engine speed increased, but this concentration was notably low for the highest engine speed tested (3000 rpm). The regulated gaseous emissions increased as the engine speed increased for all vehicles.
基金supported by the strategic project of science and technology of Chinese Academy of Sciences(No.XDB05050000)
文摘Particulate matter(PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health.It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics,especially ultrafine particles(UFP &lt; 100 nm) and accumulation mode particles(AMP 100-555 nm).Four commercial cooking oils are auto dipped water to simulate cooking fume under heating to 255℃ to investigate PM emission and decay features between 0.03 and 10 μm size dimension by electrical low pressure impactor(ELPI) without ventilation.Rapeseed and sunflower produced high PM_(2.5) around5.1 mg/m^3,in comparison with those of soybean and corn(5.87 and 4.55 mg/m^3,respectively)at peak emission time between 340 and 450 sec since heating oil,but with the same level of particle numbers 6-9 × 10~5/cm^3.Mean values of PM_(1.0)/PM_(2.5) and PM_(2.5)/PM_(10) at peak emission time are around 0.51-0.55 and 0.23-0.29.After 15 min naturally deposition,decay rates of PM_(1.0),PM_(2.5) and PM_(10) are 13.3%-29.8%,20.1%-33.9%and 41.2%-54.7%,which manifest that PM_(1.0) is quite hard to decay than larger particles,PM_(2.5) and PM_(1.0).The majority of the particle emission locates at 43 nm with the largest decay rate at 75%,and shifts to a larger size between137 and 555 nm after 15 min decay.The decay rates of the particles are sensitive to the oil type.
基金supported by the National Department Public Benefit Research Foundation of China (No.201009001)the National Natural Science Foundation of China (No.41005065)the Basic Foundation for Public Benefit-Research Academies from the Central Government (No.2008KYYW01)
文摘New particle formation is a key process in shaping the size distribution of aerosols in the atmosphere.We present here the measurement results of number and size distribution of aerosol particles (10–10000 nm in diameter) obtained in the summer of 2008,at a suburban site in Beijing,China.We firstly reported the pollution level,particle number size distribution,diurnal variation of the particle number size distribution and then introduced the characteristics of the particle formation processes.The results showed that the number concentration of ultrafine particles was much lower than the values measured in other urban or suburban areas in previous studies.Sharp increases of ultrafine particle count were frequently observed at noon.An examination of the diurnal pattern suggested that the burst of ultrafine particles was mainly due to new particle formation promoted by photochemical processes.In addition,high relative humidity was a key factor driving the growth of the particles in the afternoon.During the 2-month observations,new particle formation from homogeneous nucleation was observed for 42.7% of the study period.The average growth rate of newly formed particles was 3.2 nm/hr,and varied from 1.2 to 8.0 nm/hr.The required concentration of condensable vapor was 4.4×10 7 cm-3,and its source rate was 1.2×10 6 cm-3 sec-1.Further calculation on the source rate of sulphuric acid vapor indicated that the average participation of sulphuric acid to particle growth rates was 28.7%.
基金supported by the Research and Development Special Fund for Public Welfare Industry (Meteorology) (GYHY200806001)the Key Project in the National Science & Technology Pillar Program (2006BAC12B03)
文摘The atmospheric aerosol distribution,source and relationship with cloud condensation nuclei(CCN) observed during the Beijing Cloud Experiment(BCE) are analyzed.The results show that the high number concentrations of aerosol mainly distributed below 4500 m,and the magnitude could reach to 103 cm 3.Above 4500 m,the aerosol number concentrations decreased to 101 cm 3 as the altitude increases,and the aerosol mean diameters were between 0.16 and 0.19 μm.Below 4500 m,the number size distributions of aerosol showed a bimodal(multimodal) mode,and an unimodal mode above it.Due to the different sources of aerosol,the conversion ratios of aerosol to CCN were less than 20% below 4500 m,and reached 50% above the level at 0.3% supersaturation.The back trajectories showed that aerosols at higher levels above 4500 m were strongly affected by large-size particles and those below 4500 m were strongly affected by local or regional pollution.Based on observations,a relationship between the CCN number concentration and aerosol number concentration is established.