An aromatic diamine monomer,4,4'-bis(3-amino-5-trifluoromethyl phenoxy)-biphenyl (TFBPDA),wassynthesized via the nucleophilic displacement reaction of 3,5-dinitrobenzotrifluoride and 4,4'-biphenol.The monomer ...An aromatic diamine monomer,4,4'-bis(3-amino-5-trifluoromethyl phenoxy)-biphenyl (TFBPDA),wassynthesized via the nucleophilic displacement reaction of 3,5-dinitrobenzotrifluoride and 4,4'-biphenol.The monomer wasreacted with various aromatic dianhydrides via the high temperature polycondensation procedure to provide a series ofpolyimides.The polyimides,PI-1 to PI-4,show good solubility not only in aprotic solvents,such as N-methyl-2-pyrrolidinone and N,N-dimethylacetamide,but also in many common solvents,such as m-cresol,chloroform andcyclopentanone.PI-4,derived from 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and TFBPDA,was even soluble intoluene.Moreover,PI films exhibit good thermal stability,outstanding transparency in the visible light region and acceptablemechanical and electrical properties.The excellent combined properties of the polyimides make them as a good candidate forfabricating microelectronics.展开更多
A series of novel catalysts was developed using cationic Gemini surfactants intercalated in natural montmorillonite (MMT) clay. These Gemini surfactant-MMT intercalates were used to study the kinetics of a nucleophili...A series of novel catalysts was developed using cationic Gemini surfactants intercalated in natural montmorillonite (MMT) clay. These Gemini surfactant-MMT intercalates were used to study the kinetics of a nucleophilic displacement reactions converting n-butyl bromide to n-butyl chloride in a triphase catalytic (TC) system. Most reaction rates compared favorably to those of biphase catalytic reactions where Gemini surfactants were used in the absence of MMT. Catalytic activity varied with Gemini surfactant structure, specifically with carbon spacer group and side chain length. In addition to the ease of catalyst separation that a triphase system affords, Gemini-MMT catalysts are stable and can be recycled and re-used several times.展开更多
Functional crown-ether ionic liquids were used as catalytic green solvents of Finkelstein reaction of 1-bromooctane and iodide. The rate and yield of the reaction were obvious improved compared with that using crown e...Functional crown-ether ionic liquids were used as catalytic green solvents of Finkelstein reaction of 1-bromooctane and iodide. The rate and yield of the reaction were obvious improved compared with that using crown ether in water. No free crown ether loss was observed after reaction.展开更多
A remarkable rate enhancement technique has been devised for a typical nucleophilic displacement reaction by using triphase catalytic materials based on tetraoctylammonium exchange forms of hectorite clay. Pseudo-firs...A remarkable rate enhancement technique has been devised for a typical nucleophilic displacement reaction by using triphase catalytic materials based on tetraoctylammonium exchange forms of hectorite clay. Pseudo-first order rate constants (kobs) for the conversion of 1-bromobutane to the corresponding chloride under triphase conditions using the clay catalyst in the presence of various polar cosolvents have been observed. The results here have shown that the addition of a cosolvent increases the catalytic activity of the triphase system by several fold. In addition, the results have demonstrated that each cosolvent has a unique concentration for achieving an optimum reaction rate.展开更多
基金This project is supported by the National Natural Science Foundation of China(NSFC)for distinguished Young Scholars(No.59925310).
文摘An aromatic diamine monomer,4,4'-bis(3-amino-5-trifluoromethyl phenoxy)-biphenyl (TFBPDA),wassynthesized via the nucleophilic displacement reaction of 3,5-dinitrobenzotrifluoride and 4,4'-biphenol.The monomer wasreacted with various aromatic dianhydrides via the high temperature polycondensation procedure to provide a series ofpolyimides.The polyimides,PI-1 to PI-4,show good solubility not only in aprotic solvents,such as N-methyl-2-pyrrolidinone and N,N-dimethylacetamide,but also in many common solvents,such as m-cresol,chloroform andcyclopentanone.PI-4,derived from 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and TFBPDA,was even soluble intoluene.Moreover,PI films exhibit good thermal stability,outstanding transparency in the visible light region and acceptablemechanical and electrical properties.The excellent combined properties of the polyimides make them as a good candidate forfabricating microelectronics.
文摘A series of novel catalysts was developed using cationic Gemini surfactants intercalated in natural montmorillonite (MMT) clay. These Gemini surfactant-MMT intercalates were used to study the kinetics of a nucleophilic displacement reactions converting n-butyl bromide to n-butyl chloride in a triphase catalytic (TC) system. Most reaction rates compared favorably to those of biphase catalytic reactions where Gemini surfactants were used in the absence of MMT. Catalytic activity varied with Gemini surfactant structure, specifically with carbon spacer group and side chain length. In addition to the ease of catalyst separation that a triphase system affords, Gemini-MMT catalysts are stable and can be recycled and re-used several times.
基金the Key Program of the National Natural Science Foundation of China(No.20533010).
文摘Functional crown-ether ionic liquids were used as catalytic green solvents of Finkelstein reaction of 1-bromooctane and iodide. The rate and yield of the reaction were obvious improved compared with that using crown ether in water. No free crown ether loss was observed after reaction.
文摘A remarkable rate enhancement technique has been devised for a typical nucleophilic displacement reaction by using triphase catalytic materials based on tetraoctylammonium exchange forms of hectorite clay. Pseudo-first order rate constants (kobs) for the conversion of 1-bromobutane to the corresponding chloride under triphase conditions using the clay catalyst in the presence of various polar cosolvents have been observed. The results here have shown that the addition of a cosolvent increases the catalytic activity of the triphase system by several fold. In addition, the results have demonstrated that each cosolvent has a unique concentration for achieving an optimum reaction rate.