A novel microstructure fiber (MF) structure is proposed for broadband dispersion compensation. Through manipulating the four air-hole parameters and the pitch, the broad band dispersion compensation MF can be effici...A novel microstructure fiber (MF) structure is proposed for broadband dispersion compensation. Through manipulating the four air-hole parameters and the pitch, the broad band dispersion compensation MF can be efficiently designed. The newly designed MF could compensate (to within 0.8%) the dispersion of 101 times of its length of standard single mode fiber over the entire 100-nm band centered on 1550 nm. The proposed design has been simulated through the finite difference beam propagation method, and the corresponding design procedures are also presented. OCIS codes: 060.2310, 060.2280.展开更多
Ferroptosis, a novel mode of non-apoptotic cell death,involves a metabolic dysfunction that results in the production of iron-dependent reactive oxygen species (ROS),an iron carrier protein (transferrin), intracellula...Ferroptosis, a novel mode of non-apoptotic cell death,involves a metabolic dysfunction that results in the production of iron-dependent reactive oxygen species (ROS),an iron carrier protein (transferrin), intracellular metabolic process, and related regulators (e.g., p53 protein).Previous studies have linked ferroptosis with oncogenic Ras [1], and p53 tumor suppressor positively regulates ferroptosis by transcriptionally inhibiting the expression of the cysteine/glutamate antiporter, which is encoded by the SLC7A11 gene in human [1, 2]. Whether other factors such as epigenetic factors are involved in the process remains less known.Chromatin modifier lymphoid specific helicase (LSH)contributes to the malignant progression of nasopharyngeal carcinoma and glioma [3]. We recently indicated that LSH was shown to co-operate with partners, such as G9a, to drive cancer progression [4, 5].展开更多
A tunable polarization mode dispersion (PMD) compensator based on strain-ckirped fiber Bragg gratings (FBGs) is proposed. It natures in flexible designing, large tuning range, without using linear or nonlinear chirped...A tunable polarization mode dispersion (PMD) compensator based on strain-ckirped fiber Bragg gratings (FBGs) is proposed. It natures in flexible designing, large tuning range, without using linear or nonlinear chirped phase mask, fast tuning response time, continuously adjustable, all-fiber based, compact, and cheap.展开更多
Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improv...Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improved control strategy for PMSM based on a fuzzy sliding mode control(FSMC)and a two-stage filter sliding mode observer(TFSMO)is proposed.Firstly,a novel reaching law(NRL)used in the speed loop based on hyperbolic sine function is studied,and fuzzy control ideal is shown to achieve the self-turning of the parameter for the reaching law,thus a fuzzy integral sliding mode controller based on the novel reaching law is designed in speed loop.Then the suppression effect upon chattering caused by the novel reaching law is analyzed strictly by discrete equation.Secondly,in order to restrain the high frequency components and measurement noise in back-EMFs,a two-stage filter structure based on a variable cut-off frequency low-pass filter(VCF-LPF)and a modified back-EMF observer(MBO)is conceived,and the rotor position is compensated reasonably.As a result,a TFSMO is designed.The stability of the proposed control strategy is proved by Lyapunov Criterion.The simulation and experiment results show that,compared with traditional SMO,the controller suggested above can obtain very nice system respond when the motor starts and is subjected to external disturbances,and effectively improve the problems about torque ripple,chattering and the estimation accuracy of back-EMF.展开更多
A novel three-ring-core few-mode fiber with large effective area and low nonlinear coefficient is proposed in this paper. The fiber characteristics based on the full-vector finite element method(FEM) with perfect matc...A novel three-ring-core few-mode fiber with large effective area and low nonlinear coefficient is proposed in this paper. The fiber characteristics based on the full-vector finite element method(FEM) with perfect matched layer boundary conditions show that four supermodes with large effective area, low nonlinear coefficient and low differential mode group delay(DMGD) are achieved. With the increase of input wavelength, the effective areas of three-ring-core few-mode fiber are increased, and the nonlinear coefficients are decreased. The bending losses are increased with the increase of input wavelength, and are decreased with the increase of bending radius. Moreover, the proposed fiber performs a nonlinear coefficient and DMGD flattened profile at a large wavelength range.展开更多
Retinal regeneration: The retina is a part of the central nervous system (CNS) and has long attracted neurobiologists as an excellent model organ for the study of CNS regeneration. In classical studies using urodel...Retinal regeneration: The retina is a part of the central nervous system (CNS) and has long attracted neurobiologists as an excellent model organ for the study of CNS regeneration. In classical studies using urodele amphibians like the salamander newt, it has been shown that the retina regenerates after the removal of the whole tissue even in the adulthood. This type of regeneration is considered as an example of "transdifferentiation', since the source of the regenerating retina is the retinal pigmented epithelial cells (RPE cells) (Okada, 1991;展开更多
In order to address typical problems due to the huge demand of oil for consumption in traditional internal combustion engines,a new more efficient combustion mode is proposed and studied in the framework of Computatio...In order to address typical problems due to the huge demand of oil for consumption in traditional internal combustion engines,a new more efficient combustion mode is proposed and studied in the framework of Computational Fluid Dynamics(CFD).Moreover,a Non-dominated Sorting Genetic Algorithm(NSGA-Ⅱ)is applied to optimize the related parameters,namely,the engine methanol ratio,the fuel injection time,the initial temperature,the Exhaust Gas Re-Circulation(EGR)rate,and the initial pressure.The so-called Conventional Diesel Combustion(CDC),Homogeneous Charge Compression Ignition(HCCI)and the Reactivity Controlled Compression Ignition(RCCI)combustion modes are compared.The results show that RCCI has a higher methanol ratio and an earlier injection timing with moderate EGR rate and higher initial pressure.The initial temperature increases as the methanol ratio increases.In comparison,CDC has the lowest hydrocarbon and CO emissions and the highest combustion efficiency.At different crankshaft rotation angles corresponding to 50%of the combustion amount(CA50),the combustion temperature and boundary layer temperature of HCCI change significantly,while those of RCCI undergo limited variations.At the same CA50,the exergy losses of HCCI and RCCI are lower than that of the CDC.On the basis of these findings,it can be concluded that the methanol/diesel RCCI engine can be used to obtain a clean and efficient combustion process,which should be regarded as a promising combustion mode.展开更多
基金This work was supported by the National Basic Research Program of China (No. 2003CB314900) the Key Grant Project of Chinese Ministry of Education (No. 104046)
文摘A novel microstructure fiber (MF) structure is proposed for broadband dispersion compensation. Through manipulating the four air-hole parameters and the pitch, the broad band dispersion compensation MF can be efficiently designed. The newly designed MF could compensate (to within 0.8%) the dispersion of 101 times of its length of standard single mode fiber over the entire 100-nm band centered on 1550 nm. The proposed design has been simulated through the finite difference beam propagation method, and the corresponding design procedures are also presented. OCIS codes: 060.2310, 060.2280.
基金supported by the National Natural Science Foundation of China[81372427 and 81672787(Y.Tao)81271763 and 81672991(S.Liu)]the National Basic Research Program of China[2015CB553903(Y.Tao)]
文摘Ferroptosis, a novel mode of non-apoptotic cell death,involves a metabolic dysfunction that results in the production of iron-dependent reactive oxygen species (ROS),an iron carrier protein (transferrin), intracellular metabolic process, and related regulators (e.g., p53 protein).Previous studies have linked ferroptosis with oncogenic Ras [1], and p53 tumor suppressor positively regulates ferroptosis by transcriptionally inhibiting the expression of the cysteine/glutamate antiporter, which is encoded by the SLC7A11 gene in human [1, 2]. Whether other factors such as epigenetic factors are involved in the process remains less known.Chromatin modifier lymphoid specific helicase (LSH)contributes to the malignant progression of nasopharyngeal carcinoma and glioma [3]. We recently indicated that LSH was shown to co-operate with partners, such as G9a, to drive cancer progression [4, 5].
基金This work was supported by the National 973 Basic Research and Development Program of China (No. 2003CB314901), the National Natural Science Foundation of China (No. 60377026), the National "863" High Technology Project of China (No. 2003AA311070),
文摘A tunable polarization mode dispersion (PMD) compensator based on strain-ckirped fiber Bragg gratings (FBGs) is proposed. It natures in flexible designing, large tuning range, without using linear or nonlinear chirped phase mask, fast tuning response time, continuously adjustable, all-fiber based, compact, and cheap.
基金National Key R&D Program of China(No.2018YFB1201602)。
文摘Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improved control strategy for PMSM based on a fuzzy sliding mode control(FSMC)and a two-stage filter sliding mode observer(TFSMO)is proposed.Firstly,a novel reaching law(NRL)used in the speed loop based on hyperbolic sine function is studied,and fuzzy control ideal is shown to achieve the self-turning of the parameter for the reaching law,thus a fuzzy integral sliding mode controller based on the novel reaching law is designed in speed loop.Then the suppression effect upon chattering caused by the novel reaching law is analyzed strictly by discrete equation.Secondly,in order to restrain the high frequency components and measurement noise in back-EMFs,a two-stage filter structure based on a variable cut-off frequency low-pass filter(VCF-LPF)and a modified back-EMF observer(MBO)is conceived,and the rotor position is compensated reasonably.As a result,a TFSMO is designed.The stability of the proposed control strategy is proved by Lyapunov Criterion.The simulation and experiment results show that,compared with traditional SMO,the controller suggested above can obtain very nice system respond when the motor starts and is subjected to external disturbances,and effectively improve the problems about torque ripple,chattering and the estimation accuracy of back-EMF.
基金supported by the National Natural Science Foundation of China(Nos.61671227 and 61431009)the Shandong Provincial Natural Science Foundation(No.ZR2011FM015)the Taishan Scholar Research Fund of Shandong Province
文摘A novel three-ring-core few-mode fiber with large effective area and low nonlinear coefficient is proposed in this paper. The fiber characteristics based on the full-vector finite element method(FEM) with perfect matched layer boundary conditions show that four supermodes with large effective area, low nonlinear coefficient and low differential mode group delay(DMGD) are achieved. With the increase of input wavelength, the effective areas of three-ring-core few-mode fiber are increased, and the nonlinear coefficients are decreased. The bending losses are increased with the increase of input wavelength, and are decreased with the increase of bending radius. Moreover, the proposed fiber performs a nonlinear coefficient and DMGD flattened profile at a large wavelength range.
基金supported by Grant-in-Aid(Scientific Research on Innovative Area:MEXT KAKENHI Grant Number 23124506)a Grant-in-Aid(Kiban-C:JSPS KAKENHI Grant Number 23570255)
文摘Retinal regeneration: The retina is a part of the central nervous system (CNS) and has long attracted neurobiologists as an excellent model organ for the study of CNS regeneration. In classical studies using urodele amphibians like the salamander newt, it has been shown that the retina regenerates after the removal of the whole tissue even in the adulthood. This type of regeneration is considered as an example of "transdifferentiation', since the source of the regenerating retina is the retinal pigmented epithelial cells (RPE cells) (Okada, 1991;
文摘In order to address typical problems due to the huge demand of oil for consumption in traditional internal combustion engines,a new more efficient combustion mode is proposed and studied in the framework of Computational Fluid Dynamics(CFD).Moreover,a Non-dominated Sorting Genetic Algorithm(NSGA-Ⅱ)is applied to optimize the related parameters,namely,the engine methanol ratio,the fuel injection time,the initial temperature,the Exhaust Gas Re-Circulation(EGR)rate,and the initial pressure.The so-called Conventional Diesel Combustion(CDC),Homogeneous Charge Compression Ignition(HCCI)and the Reactivity Controlled Compression Ignition(RCCI)combustion modes are compared.The results show that RCCI has a higher methanol ratio and an earlier injection timing with moderate EGR rate and higher initial pressure.The initial temperature increases as the methanol ratio increases.In comparison,CDC has the lowest hydrocarbon and CO emissions and the highest combustion efficiency.At different crankshaft rotation angles corresponding to 50%of the combustion amount(CA50),the combustion temperature and boundary layer temperature of HCCI change significantly,while those of RCCI undergo limited variations.At the same CA50,the exergy losses of HCCI and RCCI are lower than that of the CDC.On the basis of these findings,it can be concluded that the methanol/diesel RCCI engine can be used to obtain a clean and efficient combustion process,which should be regarded as a promising combustion mode.